Journal of Materials Science

, Volume 45, Issue 1, pp 139–145 | Cite as

High-temperature pyrolysis of ceramic fibers derived from polycarbosilane–polymethylhydrosiloxane polymer blends with porous structures

  • Ken’ichiro KitaEmail author
  • Masaki Narisawa
  • Atsushi Nakahira
  • Hiroshi Mabuchi
  • Masayoshi Itoh
  • Masaki Sugimoto
  • Masahito Yoshikawa


The polymer blends of PCS (polycarbosilane) and PMHS-h (polymethylohydrosiloxane with high molecular weight) were prepared by freeze-drying process of mixed benzene solution. Melt viscosity, mass loss, and gas evolution from prepared polymer blends were analyzed. A polymer blend of HSah15 (15 mass% PMHS-h to PCS) was melt-spun to fiber form, curing by thermal oxidation and pyrolyzed at various temperatures up to 1773 K. The obtained fibers were investigated by tensile tests, FE-SEM (field emission scanning electron microscope) observation, and XRD (X-ray diffraction) analysis. After pyrolysis at 1273 K, there were no pores in the cross section of the fiber derived from pure PCS; however, there were amounts of pores in the cross sections of the fiber derived from HSah15. After pyrolysis at 1773 K, the coarse β-SiC (silicon carbide) crystals were formed on the outside surface of the fiber derived from pure PCS; however, no remarkable β-SiC crystal were formed on the outside surface of the fiber derived from HSah15.


Pyrolysis Fiber Surface Thermal Oxidation Polymer Blend Average Tensile Strength 



This work is partly supported by a Grant-in Aid for Scientific Research C from Japan Society of Promotion Science.


  1. 1.
    Kita K, Narisawa M, Mabuchu H, Itoh M, Sugimoto M, Yoshikawa M (2009) J Am Ceram Soc 92:1192CrossRefGoogle Scholar
  2. 2.
    Masuda M, Mabuchi H, Tsuda H, Matsui T, Morii K (2002) Mater Sci Forum 389–393:763CrossRefGoogle Scholar
  3. 3.
    Kita K, Narisawa M, Mabuchu H, Itoh M, Sugimoto M, Yoshikawa M (2009) Adv Mater Res 66:5CrossRefGoogle Scholar
  4. 4.
    Shibata K, Oi T, Otsuka A, Sumimoto H, Oshihara K, Teraoka Y, Ueda W (2003) J Ceram Soc Jpn 111:852CrossRefGoogle Scholar
  5. 5.
    Taki T, Okamura K, Sato T (1989) J Mater Sci 24:1263. doi: CrossRefGoogle Scholar
  6. 6.
    Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, Sarthou JC, Delpuech A, Laffon C, Lagarge P, Monthioux M, Oberlin A (1991) J Mater Sci 26:1333. doi: CrossRefGoogle Scholar
  7. 7.
    Hasegawa Y, Iimura M, Yajima S (1980) J Mater Sci 15:720. doi: CrossRefGoogle Scholar
  8. 8.
    Carberry E, West R (1966) J Organomet Chem 6:582CrossRefGoogle Scholar
  9. 9.
    Bouillon E, Mocare D, Villenuve F, Pailler R, Naslain R, Monthioux M, Oberlin A, Guimon C, Pfister G (1991) J Mater Sci 26:1517. doi: CrossRefGoogle Scholar
  10. 10.
    Simon G, Bunsell RA (1984) J Mater Sci 19:3649. doi: CrossRefGoogle Scholar
  11. 11.
    Bodet R, Jia N, Tressler RE (1995) J Eur Ceram Soc 15:997CrossRefGoogle Scholar
  12. 12.
    Hasegawa Y, Okamura K (1983) J Mater Sci 18:3633. doi: CrossRefGoogle Scholar
  13. 13.
    Shimoo T, Toyoda F, Okamura K (2000) J Am Ceram Soc 83:1450CrossRefGoogle Scholar
  14. 14.
    Hao YJ, Jin GQ, Han XD, Guo XY (2006) Mater Lett 60:1334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ken’ichiro Kita
    • 1
    Email author
  • Masaki Narisawa
    • 1
  • Atsushi Nakahira
    • 1
  • Hiroshi Mabuchi
    • 1
  • Masayoshi Itoh
    • 2
  • Masaki Sugimoto
    • 3
  • Masahito Yoshikawa
    • 3
  1. 1.Graduate School of EngineeringOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.Fukushima National College of TechnologyIwaki, FukushimaJapan
  3. 3.Quantum Beam Science DirectorateJapan Atomic Energy AgencyTakasaki, GunmaJapan

Personalised recommendations