Journal of Materials Science

, Volume 45, Issue 1, pp 89–97 | Cite as

Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization

  • Wen-Fu LeeEmail author
  • Kai-Tai Tsao


A series of nanocomposite hydrogels (APEAg series gels) were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and silver nanoparticles through in situ polymerization by UV irradiation. The effect of the content of silver nanoparticle on the properties of the nanocomposite hydrogels was investigated. Results showed that, with increasing of the content of the silver nanoparticle in the hydrogels, the crosslinking density and shear modulus of the hydrogel were not obviously changed, the electrical conductivities of the nanocomposite hydrogels increased, and their initial rate of Escherichia coli inactivation significantly increased, but their adhesive force only slightly decreased. These materials can be assessed as promising bioadhesive patch or wound-dressing material or electrical massage patch.


Silver Nanoparticles Adhesive Force Silver Particle Silver Content Composite Hydrogel 



The authors wish to thank the National Science Council of the Republic of China for financial support under Grant NSC 93-2216-036-01. The authors also appreciated professor Dey-Chyi Sheu (Department of Bioengineering) for his excellent skillful assistance and discussion in bacterial inactivation.


  1. 1.
    Nersisyan HH, Lee JH, Son HT, Won CW, Maeng DY (2003) Mater Res Bull 38:949CrossRefGoogle Scholar
  2. 2.
    Sondi I, Goia DV, Matijevic E (2003) Colloid Interface Sci 260:75CrossRefGoogle Scholar
  3. 3.
    Chou KS, Ren CY (2000) Mater Chem Phys 64:241CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Zhang L, Wang S, Chen W, Lei Y (2001) Polymer 42:8315CrossRefGoogle Scholar
  5. 5.
    Liu H, Ge X, Ni Y, Ye Q, Zhang Z (2001) Rad Phys Chem 61:89CrossRefGoogle Scholar
  6. 6.
    Liu FK, Huang PW, Chang YC, Ko FH, Chu TC (2004) J Mater Res 19:469CrossRefGoogle Scholar
  7. 7.
    Okitsu K, Bandow H, Maeda Y (1996) Chem Mater 8:315CrossRefGoogle Scholar
  8. 8.
    Carotenuto G, Nicolais L, Martorana B, Perlo P (2005) In: Nicolais L, Carotenuto G (ed) Metal-polymer nanocomposites: metal-polymer nanocomposite synthesis: novel ex situ and in situ approaches, chap 5. Wiley Interscience, New York, p 155Google Scholar
  9. 9.
    Zhu YJ, Qian YT, Li XJ, Zhang MW (1998) Nanostruct Mater 10:673CrossRefGoogle Scholar
  10. 10.
    Zhu YJ, Qian YT, Zhang MW, Chen ZY, Bin L, Wang CS (1993) Mater Lett 17:314CrossRefGoogle Scholar
  11. 11.
    Shojaei AH, Li X (1997) J Control Release 47:151CrossRefGoogle Scholar
  12. 12.
    Mortazavi SA (1995) Int J Pharm 124:173CrossRefGoogle Scholar
  13. 13.
    Chickering DE, Mathiowitz E (1995) J Control Release 34:251CrossRefGoogle Scholar
  14. 14.
    Florence AT, Jani PU (1994) Drug Saf 10:233CrossRefGoogle Scholar
  15. 15.
    Hwang SJ, Park H (1998) Crit Rev Ther Drug Carrier Syst 15:243Google Scholar
  16. 16.
    Ahuja A, Khar RK, Ali J (1997) Drug Dev Ind Pharm 23:489CrossRefGoogle Scholar
  17. 17.
    Yang XJ, Robinson R (1998) In: Okano T (ed) Biorelated polymers and gel: controlled release application in biomedical engineering. Academic Press, London, p 135Google Scholar
  18. 18.
    Park H, Robinson JR (1987) Pharm Res 4:457CrossRefGoogle Scholar
  19. 19.
    Lee WF, Tsao KTJ (2006) Appl Polym Sci 5:3653CrossRefGoogle Scholar
  20. 20.
    Kabra BG, Gehnke SW, Hwang STJ (1991) Appl Polym Sci 42:2409CrossRefGoogle Scholar
  21. 21.
    Franson NM, Peppas NAJ (1983) Appl Polym Sci 28:1299CrossRefGoogle Scholar
  22. 22.
    Korsmeyer RW, Merrwall EW, Peppas NA (1986) J Polym Sci Polym Phys Ed 24:109CrossRefGoogle Scholar
  23. 23.
    Peppas NA, Franson NM (1983) J Control Release 21:983Google Scholar
  24. 24.
    Davidson CW, Peppas NA (1986) J Control Release 3:259CrossRefGoogle Scholar
  25. 25.
    Peppas NA, Barr-Howell BD (1986) Hydrogels in medicine and pharmacy, vol 1. CRC Press, Boca Raton, p 27Google Scholar
  26. 26.
    Treloar LRG (1975) The physis of rubber elasticity. Clarendon Press, OxfordGoogle Scholar
  27. 27.
    Valdes LG (1954) Proc IRE 42:420CrossRefGoogle Scholar
  28. 28.
    Smits FM (1958) Bell Syst Tech J 37:711CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:105CrossRefGoogle Scholar
  30. 30.
    Bredas JL, Silbey R (1991) Conjugated polymers. Kluwer Academic Publisher, Dordrecht, p 49CrossRefGoogle Scholar
  31. 31.
    Hartley FR (1973) Chem Rev 73:163CrossRefGoogle Scholar
  32. 32.
    Hong SU, Jin JH, Won J, Kang YS (2000) Adv Mater 12:968CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTatung UniversityTaipeiTaiwan

Personalised recommendations