Advertisement

Journal of Materials Science

, Volume 45, Issue 1, pp 64–73 | Cite as

Chlorinated polyethylene nanocomposites: thermal and mechanical behavior

  • Sritama Kar
  • Pradip K. Maji
  • Anil K. BhowmickEmail author
Article

Abstract

Chlorinated polyethylene (CPE) nanocomposites prepared with natural and organically treated montmorillonite (MMT) clays by solution intercalation method were investigated. X-ray diffraction and transmission electron microscopy techniques showed separation of organically modified clay MMT layers and indicated formation of exfoliated nanocomposites. Fourier transform infrared spectroscopy results showed interaction between the CPE matrix and the clay intercalants of Cloisite® 30B and Cloisite® 15A (natural MMT modified with quaternary ammonium salts). Organically treated MMT clays were found to be better dispersed in CPE in comparison to natural MMT clay. Mechanical testing showed enhanced tensile strength, Young’s modulus, and storage modulus of chlorinated-polymers/organically treated MMT clay nanocomposites. Significant improvements in the above properties were obtained with Cloisite® 15A nanoclay. The temperature, at which maximum degradation occurred, was higher for the nanocomposite having 5 wt% Cloisite 15A than that of neat CPE. Differential scanning calorimetric results revealed that the same composition also absorbed more heat during the heating, indicating better thermal stability. CPE rubber nanocomposite could be a promising heat resistant polymeric material.

Keywords

Clay Storage Modulus Dynamic Mechanical Thermal Analysis Methyl Ethyl Ketone Rubber Matrix 

References

  1. 1.
    Usuki A, Kawasumi M, Okada A (1993) J Mater Res 8:1174CrossRefGoogle Scholar
  2. 2.
    Usuki A, Kojima Y, Kawasumi M, Okada A (1993) J Mater Res 8:1179CrossRefGoogle Scholar
  3. 3.
    Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Polymer 42:9929CrossRefGoogle Scholar
  4. 4.
    Hasegawa N, Kawasumi M, Kato M, Usiki A, Okada A (1998) J Appl Polym Sci 67:8792CrossRefGoogle Scholar
  5. 5.
    Aranda P, Ruiz-Hitzhy E (1999) Appl Clay Sci 15:119CrossRefGoogle Scholar
  6. 6.
    Sandi G, Carrado KA, Joachin H, Lu W, Prakash J (2003) J Power Sources 119:492CrossRefGoogle Scholar
  7. 7.
    Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci A Polym Chem 31:2493CrossRefGoogle Scholar
  8. 8.
    Donnet JB (2003) Compos Sci Technol 63:1085CrossRefGoogle Scholar
  9. 9.
    Zhang LQ, Wu YP, Wang YQ (2000) China Synth Rubber Ind 23:71Google Scholar
  10. 10.
    Hamed GR (2000) Rubber Chem Technol 73:524CrossRefGoogle Scholar
  11. 11.
    Zhang L, Wang Y, Wang Y, Sui Y, Yu D (2000) J Appl Polym Sci 78:1873CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang L, Tang C, Yu D (2000) J Appl Polym Sci 78:1879CrossRefGoogle Scholar
  13. 13.
    Wu Y-P, Zhang L-Q, Wang Y-Q, Liang Y, Yu D-S (2001) J Appl Polym Sci 82:2842CrossRefGoogle Scholar
  14. 14.
    Maiti M, Bhowmick AK (2006) Polymer 47(17):6156CrossRefGoogle Scholar
  15. 15.
    Maiti M, Bhowmick AK (2007) J App Polym Sci 105(2):435CrossRefGoogle Scholar
  16. 16.
    Maji PK, Guchhait PK, Bhowmick AK (2009) ACS Appl Mater Interface 1:289CrossRefGoogle Scholar
  17. 17.
    Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185CrossRefGoogle Scholar
  18. 18.
    Acharya H, Srivastava SK, Bhowmick AK (2007) Compos Sci Technol 67(13):2807CrossRefGoogle Scholar
  19. 19.
    Arroyo M, Lopen-Manchado MA, Herrero B (2003) Polymer 44:2447CrossRefGoogle Scholar
  20. 20.
    Varghese S, Karger-Kocsis J (2003) Polymer 44:4921CrossRefGoogle Scholar
  21. 21.
    Ganter M, Gronski W, Reichert P, Muelhaupt R (2001) Rubber Chem Technol 74:221CrossRefGoogle Scholar
  22. 22.
    Ganguly A, De Sarkar M, Bhowmick AK (2006) J Polym Sci B Polym Phys 45(1):52CrossRefGoogle Scholar
  23. 23.
    Kim Y, White JL (2003) J Appl Polym Sci 90:1581CrossRefGoogle Scholar
  24. 24.
    Datta H, Singha NK, Bhowmick AK (2008) Macromolecules 41:50CrossRefGoogle Scholar
  25. 25.
    Patel S, Bandyopadhyay A, Vijayabaskar V, Bhowmick AK (2005) Polymer 46:2005CrossRefGoogle Scholar
  26. 26.
    Sadhu S, Bhowmick AK (2004) J Polym Sci B Polym Phys 42:1573CrossRefGoogle Scholar
  27. 27.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 118:108Google Scholar
  28. 28.
    Chrissopoulou K, Altintzi I, Andrianaki I, Shemesh R, Retsos H, Giannelis EP, Anastasiadis SH (2008) J Polym Sci B Polym Phys 46:2683CrossRefGoogle Scholar
  29. 29.
    Vo LT, Giannelis EP (2007) Macromolecules 40:8271CrossRefGoogle Scholar
  30. 30.
    Zanetti M, Kashiwagi T, Falqui L, Camino G (2002) Chem Mater 14:881CrossRefGoogle Scholar
  31. 31.
    Wang SF, Hu Y, Lin ZH, Gui Z, Wang ZZ, Chen ZY, Fan WCH (2003) Polym Int 52:1045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sritama Kar
    • 1
  • Pradip K. Maji
    • 2
  • Anil K. Bhowmick
    • 2
    • 3
    Email author
  1. 1.School of Polymers and High Performance MaterialsThe University of Southern MississippiHattiesburgUSA
  2. 2.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia
  3. 3.Indian Institute of TechnologyPatnaIndia

Personalised recommendations