Advertisement

PEG-directed hydrothermal synthesis of alumina nanorods with mesoporous structure via AACH nanorod precursors

  • Zhenfeng Zhu
  • Hongjun Sun
  • Hui Liu
  • Dong Yang
Article

Abstract

Al2O3 nanorods with mesoporous structures are successfully synthesized from a hydrothermal and thermal decomposition process via the ammonium aluminum carbonate hydroxide (denoted as AACH) precursors. TEM images show that the average diameter of Al2O3 nanorods is about 60 nm, and the length is around 1–2 μm. The experimental results show that well-crystallized mesopores with hierarchically distributed pore sizes are embedded in the Al2O3 nanorods. The N2 adsorption–desorption experiment indicates that the as-synthesized alumina nanorods have large surface area (ca. 176 m2/g) and narrow pore-size distributions. At the same time, the as-prepared Al2O3 nanorods exhibit strong photoluminescent properties at room temperature. A plausible surfactant-induced nanorod formation mechanism using the poly ethylene glycols as the template agent for the nanorod assembly is also proposed.

Keywords

Mesoporous Structure Select Area Electron Diffraction Pattern Mesoporous Alumina Weight Loss Event Transition Electron Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by the National Science Foundation of China (No. 50772064), the Graduate Innovation Fund of Shaanxi University of Science and Technology and China Postdoctoral Science Foundation Founded Project (No. 20080440185).

References

  1. 1.
    Chandradass J, Balasubramanian M (2006) J Mater Sci 41:6026. doi: 10.1007/s10853-006-0491-z CrossRefADSGoogle Scholar
  2. 2.
    Tanada S, Kabayama M, Kawasaki N, Sakiyama T, Nakamura T, Araki M, Tamura T (2003) J Colloid Interface Sci 257:135CrossRefPubMedGoogle Scholar
  3. 3.
    Bagshaw SA, Pinnavaia TJ (1996) Angew Chem Int Ed Engl 35:1102CrossRefGoogle Scholar
  4. 4.
    Defriend AK, Barron RA (2003) J Mater Sci 38:2673. doi: 10.1023/A:1024494821196 CrossRefGoogle Scholar
  5. 5.
    Zou JP, Pu L, Bao XM, Feng D (2002) Appl Phys Lett 80:1079CrossRefADSGoogle Scholar
  6. 6.
    Li YW, Li N, Yuan RZ (1999) J Mater Sci 34:2547. doi: 10.1023/A:1004636312836 CrossRefGoogle Scholar
  7. 7.
    Wang JH, Min BD, Lee JS et al (2004) Adv Mater 16:422CrossRefGoogle Scholar
  8. 8.
    Rabin O, Herz PR, Lin YM, Akinwande AI, Cronin SB, Dresselhaus MS (2003) Adv Funt Mater 13:631CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Xu X, Zhang H, Chen Y, Xu J, Yu D (2004) Appl Phys A Mater Sci Process 79:1721. doi: 10.1007/s00339-004-2911-8 ADSGoogle Scholar
  10. 10.
    Pu L, Bao XM, Zou JP, Feng D (2001) Angew Chem Int Ed 40:1490CrossRefGoogle Scholar
  11. 11.
    Kwon SW, Park SB (2000) J Mater Sci 35:1973. doi: 10.1023/A:1004774620783 CrossRefGoogle Scholar
  12. 12.
    Lee HC, Kim HJ, Rhee CH, Lee KH, Lee JS, Chung SH (2005) Micropor Mesopor Mater 79:61CrossRefGoogle Scholar
  13. 13.
    Zhu HY, Riches JD, Barry JC (2002) Chem Mater 14:2086CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Pinnavaia TJ (2002) J Am Chem Soc 124:12294CrossRefPubMedGoogle Scholar
  15. 15.
    Bai P, Su FB, Wu PP, Wang LK, Lee FY, Lv L, Yan ZF, Zhao XS (2007) Langmuir 23:4599CrossRefPubMedGoogle Scholar
  16. 16.
    Cao MH, Wang YH, Guo CX et al (2004) J Nanosci Naonotech 4:824CrossRefGoogle Scholar
  17. 17.
    Li ZQ, Xiong YJ, Xie Y (2003) Inorg Chem 42:8105CrossRefPubMedGoogle Scholar
  18. 18.
    Hammond PT (2004) Adv Mater 16:1271CrossRefGoogle Scholar
  19. 19.
    Li ZJ, Feng X, Yao HC et al (2004) J Mater Sci 39:2267. doi: 10.1023/B:JMSC.0000017804.38298.92 CrossRefADSGoogle Scholar
  20. 20.
    Zhu ZF, Liu H, Sun HJ, Yang D (2009) Micropor Mesopor Mater 123:39CrossRefGoogle Scholar
  21. 21.
    Wu ZS, Shen YD, Dong Y, Jiang JQ (2009) J Alloys Compd 467:600CrossRefGoogle Scholar
  22. 22.
    Kara F, Sahin G (2000) J Eur Ceram Soc 20:689CrossRefGoogle Scholar
  23. 23.
    Parida KM, Pradhan AC, Das J, Sahu N (2009) Mater Chem Phys 113:244CrossRefGoogle Scholar
  24. 24.
    Jorgensen EB, Hvidt S, Brown W, Schillen K (1997) Macromolecules 30:2355CrossRefADSGoogle Scholar
  25. 25.
    Ganguly R, Aswal VK, Hassan PA, Gopalakrishnan IK, Yakhmi JV (2005) J Phys Chem B 109:5653CrossRefPubMedGoogle Scholar
  26. 26.
    Yu ZQ, Chang D, Li C, Zhang N, Feng YY, Dai YY (2001) J Mater Res 16:1890CrossRefADSGoogle Scholar
  27. 27.
    Ma MG, Zhu YJ, Xu ZL (2007) Mater Lett 61:1812CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations