Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6398–6403 | Cite as

New application of poly(butylene succinate) (PBS) based ionomer as biopolymer: a role of ion group for hydroxyapatite (HAp) crystal formation

  • Jung Seop LimEmail author
  • Jong Hoon KimEmail author
Article

Abstract

Sodium sulfonate ionic group bearing PBS ionomer (PBSi) and hydroxyapatite (HAp) composites were prepared by soaking in the simulated body fluid (SBF) solution, which is the biomimetic method, as well as the effects of the ionic group on the HAp crystal formation and growth were investigated. The introduced sodium sulfonate ionic groups operated as the functional groups with negative charge densities, which can bind plentiful Ca2+ ions efficiently, consequently serving as active sites allowing HAp crystals to grow on the surfaces of the PBSi matrix. By SEM analysis, it was observed that HAp became growing as the shape with the porous holes. These holes are thought to be very suitable for the ingrowths of the surrounding tissue and the assistance to the bone formation. Based on this finding, it can be clearly concluded that the ionic groups in the PBSi may be decisive factors in growing HAp, and it is anticipated that this novel materials can contribute to excellent biopolymer.

Keywords

Simulated Body Fluid Immersion Time Ionic Group Simulated Body Fluid Solution Dimethyl Fumarate 

References

  1. 1.
    Eisengerg A, Kim KS (1998) Introduction to ionomers. Wiley, New YorkGoogle Scholar
  2. 2.
    Molnar A, Eisenberg A (1992) Macromolecules 25:5774CrossRefGoogle Scholar
  3. 3.
    Eisengerg A, Hird B, Moore RA (1990) Macromolecules 23:4098CrossRefGoogle Scholar
  4. 4.
    Han SI, Kim DK, Im SS (2003) Polymer 44:7165CrossRefGoogle Scholar
  5. 5.
    Lim JS, Lee YI, Im SS (2008) J Polym Sci B Polym Phys 46:925CrossRefGoogle Scholar
  6. 6.
    Lim JS, Isao N, Im SS (2008) Eur Polym J 44:1428CrossRefGoogle Scholar
  7. 7.
    Hao J, Liu Y, Zhou S, Li Z, Deng X (2003) Biomaterials 24:1531CrossRefGoogle Scholar
  8. 8.
    Murugan R, Ramakrishna S (2005) Cryst Growth Des 5:111CrossRefGoogle Scholar
  9. 9.
    Guild FJ, Bonfield W (1993) Biomaterials 14:985CrossRefGoogle Scholar
  10. 10.
    Shikinami Y, Okuno M (2001) Biomaterials 22:3197CrossRefGoogle Scholar
  11. 11.
    Shikinami Y, Okuno M (1999) Biomaterials 20:859CrossRefGoogle Scholar
  12. 12.
    Wang M, Bonfeld W (2001) Biomaterials 22:1311CrossRefGoogle Scholar
  13. 13.
    Huang M, Feng JQ (2003) J Mater Sci Mater Med 14:655CrossRefGoogle Scholar
  14. 14.
    Petricca SE, Marra KG, Kutma PN (2006) Acta Biomater 2:277CrossRefGoogle Scholar
  15. 15.
    Xiao Y, Li D, Fan H, Li X, Gu Z, Zhang X (2007) Mater Lett 61:59CrossRefGoogle Scholar
  16. 16.
    Xiao Y, Xu Y, Lu J, Zhu X, Fan H, Zhang X (2007) Mater Lett 61:2601CrossRefGoogle Scholar
  17. 17.
    Wang M, Bonfiel W (2001) Biomaterials 22:1311CrossRefGoogle Scholar
  18. 18.
    Wang M, Deb S, Bonfelid W (2000) Mater Lett 44:119CrossRefGoogle Scholar
  19. 19.
    Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) J Am Ceram Soc 78:1769CrossRefGoogle Scholar
  20. 20.
    Beppu MM, Torres MA, Aimoli CG, Coulart GAS, Santana CC (2005) J Mater Res 20:3303CrossRefGoogle Scholar
  21. 21.
    Ihn KJ, Yoo ES, Im SS (1995) Macromolecules 28:2460CrossRefGoogle Scholar
  22. 22.
    JCPDS card no. 73–293 (2000) ICDD, PCPDFWIN v.2.1 JCPDS—International Centre for Diffraction DataGoogle Scholar
  23. 23.
    Takadama H, Kim HM, Kokubo T, Nakamura T (2001) Chem Mater 13:1108CrossRefGoogle Scholar
  24. 24.
    Murugan R, Ramakrishna S (2006) Acta Biomater 2:201CrossRefGoogle Scholar
  25. 25.
    Liou SC, Chen SY, Liu DM (2003) Biomaterials 24:3981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Heracron Research Institute, Kolon Central Research ParkKolon Industries Inc.Gyungsangbuk-DoKorea
  2. 2.Korea High Tech Textile Research InstituteGyunggi-doKorea

Personalised recommendations