Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6392–6397 | Cite as

Synthesis and characterization of gold–polypyrrole film composite

  • Mohamad M. AyadEmail author
Article

Abstract

Polypyrrole (PPy) coatings have potential applications in batteries, fuel cells, sensors, anti-corrosion coatings, and drug delivery systems. In this article, PPy film coating on the electrode of quartz crystal microbalance (QCM) was exposed to acidic aqueous HAuCl4 solution. The reduction for gold ions took place and gold particles were produced at the film surface. The gold content at the PPy film was monitored by using QCM. The concentration of gold uptake increases as the original concentration of HAuCl4 solution increases. The morphology of the film before and after the deposition of the gold particles was studied by the scanning electron microscopy coupled with energy dispersive X-ray spectrometry. The gold particles are of undefined shape and have diameters around 200–600 nm. However, the image of the composite powder shows that gold particles of sizes 100–120 nm are distributed over the surface of the polymer particles with some aggregation. Infrared spectroscopy and X-ray diffraction were used to characterize the composite.

Keywords

Pyrrole Gold Particle Polypyrrole Quartz Crystal Microbalance Metallic Gold 

References

  1. 1.
    Gamez G, Gardea-Torresdey J, Tiemann K, Parsons J, Dokken K, Jose Yacaman M (2003) Adv Environ Res 7:563CrossRefGoogle Scholar
  2. 2.
    Park S, Lee JC, Lee DW, Lee JH (2003) J Mater Sci 38:4493. doi: https://doi.org/10.1023/A:1027329501367 CrossRefGoogle Scholar
  3. 3.
    Park S, Lee JC, Kim BS, Lee JH (2005) J Mater Sci 40:5327. doi: https://doi.org/10.1007/s10853-005-4399-9 CrossRefGoogle Scholar
  4. 4.
    Park S, Lee JC, Seo JU, Lee JH, Kim HJ (2006) Key Eng Mater 317/318:841CrossRefGoogle Scholar
  5. 5.
    Shoji R, Miyazaki T, Niinou T, Kato M, Ishii H (2004) J Mater Cycles Waste Manag 6:142CrossRefGoogle Scholar
  6. 6.
    Gardea-Torresdey J, Parsons J, Gomez G, Peralta-Videa J, Troiani H, Santiago P, Yacaman M (2002) Nano Lett 2:397CrossRefGoogle Scholar
  7. 7.
    Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan S, Ramani R, Parischa R, Ajayakumar P, Alam M, Sastry M, Kumar R (2001) Angew Chem Int Ed 40:3585CrossRefGoogle Scholar
  8. 8.
    Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M, Kumar R, Sastry M (2002) ChemBio Chem 3:461CrossRefGoogle Scholar
  9. 9.
    Kuyucak N, Volesky B (1989) Biorecovery 1:189Google Scholar
  10. 10.
    Tavlarides L, Bae J, Lee C (1987) Sep Sci Technol 22:581CrossRefGoogle Scholar
  11. 11.
    Green B, Kotze M, Wyethe J (2002) JOM 54:37CrossRefGoogle Scholar
  12. 12.
    Tkachenko A, Xie H, Coleman D, Glomm D, Ryan J, Anderson M, Franzen S, Feldheim D (2003) J Am Chem Soc 125:4700CrossRefGoogle Scholar
  13. 13.
    Rosi N, Mirkin C (2005) Chem Rev 105:1547CrossRefGoogle Scholar
  14. 14.
    Daniel M, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  15. 15.
    Parak W, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams S, Boudreau R, Le Gros M, Larabell CA, Livisatos AP (2003) Nanotechnology 14:R15CrossRefGoogle Scholar
  16. 16.
    Jiwei L, Jingxia Q, Miao Y, Chen J (2008) J Mater Sci 43:6285. doi: https://doi.org/10.1007/s10853-008-2905-6 CrossRefGoogle Scholar
  17. 17.
    Wang W, Zhang R, Shi G (2009) J Mater Sci 44:3002. doi: https://doi.org/10.1007/s10853-009-3416-9 CrossRefGoogle Scholar
  18. 18.
    Rubinger CPL, Costa LC, Esteves ACC, Barros-Timmons A, Martins JA (2008) J Mater Sci 43:3333. doi: https://doi.org/10.1007/s10853-007-2367-2 CrossRefGoogle Scholar
  19. 19.
    Tang Q, Sun X, Li Q, Lin J, Wu J (2009) J Mater Sci 44:849. doi: https://doi.org/10.1007/s10853-008-3137-5 CrossRefGoogle Scholar
  20. 20.
    Kang ET, Ting YP, Neoh KG, Tan KL (1993) Polymer 34:4994CrossRefGoogle Scholar
  21. 21.
    Ting P, Neoh KG, Kang ET, Tan KL (1994) J Chem Technol Biotechnol 59:31CrossRefGoogle Scholar
  22. 22.
    Kang T, Ting YP, Neoh KG, Tan KL (1995) Synth Met 69:477CrossRefGoogle Scholar
  23. 23.
    Ayad MM (1994) Polym Int 35:35CrossRefGoogle Scholar
  24. 24.
    Ayad MM (1994) J Appl Polym Sci 53:1331CrossRefGoogle Scholar
  25. 25.
    Ayad MM, Zaki EA (2009) Appl Surf Sci (in press). doi:  https://doi.org/10.1016/j.apsusc
  26. 26.
    Ayad MM, Prastomo N, Matsuda A, Stejskal J (accepted) Synth MetGoogle Scholar
  27. 27.
    Sauerbrey G (1959) Z Phys 155:2062CrossRefGoogle Scholar
  28. 28.
    Weast RC, Astle MJ (1982–1983) Handbook of chemistry and physics, 63rd edn. CRC Press LLC, Boca Raton, FLGoogle Scholar
  29. 29.
    Neoh KG, Young TT, Lopi NT, Kang ET, Tan KL (1997) Chem Mater 9:2906CrossRefGoogle Scholar
  30. 30.
    Duchet J, Legras R, Demoustier-Champagne R (1998) Synth Met 98:113CrossRefGoogle Scholar
  31. 31.
    Qu LT, Shi GQ, Chen FE (2003) Macromolecules 36:1063CrossRefGoogle Scholar
  32. 32.
    Lu G, Li C, Shi G (2006) Polymer 47:1778CrossRefGoogle Scholar
  33. 33.
    Tian B, Zerbi G (1990) J Chem Phys 92:3892CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of TantaTantaEgypt

Personalised recommendations