Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6384–6391 | Cite as

Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions

  • S. V. EmaniEmail author
  • J. Benedyk
  • P. Nash
  • D. Chen
Article

Abstract

The effects of double aging and thermomechanical double aging on enhancing mechanical properties and accelerating the kinetics of precipitation in aluminum alloy AA7075 were studied by means of hardness tests, tensile tests, and transmission electron microscopy. Using the appropriate heat treatment schedule, the time to peak aging was reduced by a factor of up to 36 without substantial decrease in hardness or tensile properties. The use of appropriate double aging and thermomechanical double aging showed that there can be a significant impact on energy savings and productivity resulting from the accelerated kinetics of precipitation.

Keywords

Aging Treatment Aging Temperature Artificial Aging AA7075 Alloy Peak Hardness 

Notes

Acknowledgements

The authors are grateful for the assistance of Mr. R. Janota and Prof. S. Mostovoy, IIT. The authors are also grateful for the financial assistance from Kam Kiu Aluminium Group, China.

References

  1. 1.
    Ryum N (1975) Z Metallkd 66:338Google Scholar
  2. 2.
    Lloyd DJ, Chaturvedi MC (1982) J Mater Sci 17:1819. doi: https://doi.org/10.1007/BF00540811 CrossRefGoogle Scholar
  3. 3.
    Berg LK et al (2001) Acta Mater 49:3443CrossRefGoogle Scholar
  4. 4.
    Reynolds Metals Company, Inc (1967) US Patent 3,305,410, 21 Feb 1967Google Scholar
  5. 5.
    General Electric Company, Inc (1942) US Patent 2,275,188, 3 March 1942Google Scholar
  6. 6.
    Societa, Per L’esercizio Dell ‘Istituto Sperimentale Dei Metalli Leggeri (1972) US Patent 3,706,606, 19 Dec 1972Google Scholar
  7. 7.
    Aluminum Company of America, Inc (1984) US Patent 4,477,292, 16 Oct 1984Google Scholar
  8. 8.
    Harrington RH (1939) In: Proceedings of the conference on age hardening of metals. American Society for Metals, Chicago, pp 314Google Scholar
  9. 9.
    Conserva M et al (1973) Mater Sci Eng 11:103CrossRefGoogle Scholar
  10. 10.
    Tavassoli AA (1974) Met Sci 8:424CrossRefGoogle Scholar
  11. 11.
    Ostermann F (1971) Metall Trans 2:2897CrossRefGoogle Scholar
  12. 12.
    Paton NE, Sommer AW (1973) In: The microstructure and design of alloys: proceedings of the third international conference on the strength of metals and alloys, vol 1. Institute of Metals, Iron and Steel Institute, Cambridge, England, p 101Google Scholar
  13. 13.
    Cahn JW (1980) Bull Alloy Phase Diagr 1(2):27CrossRefGoogle Scholar
  14. 14.
    Yamada K, Sato T (2001) J Jpn Inst Light Met 65:897CrossRefGoogle Scholar
  15. 15.
    Ayer R, Koo JY, Steeds JW, Park BK (1985) Metall Trans A 16:1925CrossRefGoogle Scholar
  16. 16.
    Murakami Y et al (1968) Jpn Inst Met Suppl Trans 9:349CrossRefGoogle Scholar
  17. 17.
    Danh NG, Rajan K, Wallace W (1983) Metall Trans A 14:1843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Thermal Processing Technology CenterIllinois Institute of TechnologyChicagoUSA
  2. 2.Alcoa Global Hard Alloy Extrusion (GHAE) Massena OperationsMassenaUSA

Personalised recommendations