Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6372–6383 | Cite as

Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels

  • K. MigiakisEmail author
  • G. D. Papadimitriou
Article

Abstract

Super-duplex stainless steels present excellent combination of mechanical and corrosion resistance, due to their strict composition control and ferrite–austenite phase balance. This balance may, however, be disturbed during welding in both the fusion and HAZ due to the rapid cooling rates and may lead to loss of the good corrosion and mechanical properties of the weldments. The present investigation is studying the effect of nitrogen addition in the plasma operation gases and of the increase of nickel in the filler metal, on the microstructure and on the mechanical properties of super-duplex stainless steels welded by the plasma transferred arc (PTA) technique. Results have shown that nitrogen addition in the plasma operation gas affects the mechanical properties of the weldments. It is shown that nitrogen addition in the plasma and protective gas and higher nickel content in the filler metal have both a positive effect on the elongation of the welded specimens and after optimization of the welding parameters very good results may be obtained in terms of tensile strength.

Keywords

Welding Ferrite Austenite Weld Metal Fusion Zone 

References

  1. 1.
    Charles J (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper KIGoogle Scholar
  2. 2.
    Nilsson JO (1992) Mater Sci Tech 8:685CrossRefGoogle Scholar
  3. 3.
    Gunn RN (1997) Duplex stainless steels, microstructure properties and applications. Abington Publishing, Cambridge, EnglandCrossRefGoogle Scholar
  4. 4.
    Fourie JW, Robinson FPA (1990) J S Afr Inst Min Metall 90(3):59Google Scholar
  5. 5.
    Muthupandi V, Srinivasan PB, Seshadri SK, Sundaresan S (2003) Mater Sci Eng A358:9CrossRefGoogle Scholar
  6. 6.
    Sathiya P, Aravindan S, Noorul Haq A (2009) J Mater Sci 44:114. doi: https://doi.org/10.1007/s10853-008-3098-8 CrossRefGoogle Scholar
  7. 7.
    Wang HR, Wang W (2009) J Mater Sci 44(2):591. doi: https://doi.org/10.1007/s10853-008-3069-0 CrossRefGoogle Scholar
  8. 8.
    Avazkonandeh-Gharavol M, Haddad-Sabzevar M, Haerian A (2009) J Mater Sci 44(1):186. doi: https://doi.org/10.1007/s10853-008-3103-2 CrossRefGoogle Scholar
  9. 9.
    Lippold JC, Lin W, Brandi S, Varol I, Baeslack WA (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 116Google Scholar
  10. 10.
    Gunn RN (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 32Google Scholar
  11. 11.
    Huntala T, Nilsson J-O, Wilson A, Jonsson P (1994) Proc. Duplex stainless steels ‘94, Glascow Scotland: paper 43Google Scholar
  12. 12.
    Hertzman S, Nilsson M, Jargelius-Pettersson R (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper IGoogle Scholar
  13. 13.
    Bradshow R, Cottis A (1993) Weld Met Fabr 62(9):129Google Scholar
  14. 14.
    Wiktorowicz R, Crouch J (1993) Weld Met Fabr 62(9):379Google Scholar
  15. 15.
    Bekkers K, Hikes J, van Nassau L (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 118Google Scholar
  16. 16.
    Bhatt R, Kamat H, Ghosal S, De P (1999) J Mater Eng Perf 8(5):591CrossRefGoogle Scholar
  17. 17.
    Pak S, Karlsson L (1990) Scand J Met 19:9Google Scholar
  18. 18.
    Hertzman S, Jargelius-Pettersson R, Bom R, Kivineva E, Ericksson J (1996) ISIJ Int 36(7):968CrossRefGoogle Scholar
  19. 19.
    Gomez de Salazar JM, Soria A, Barrena MI (2007) J Mater Sci 42:4892. doi: https://doi.org/10.1007/s10853-006-0557-y CrossRefGoogle Scholar
  20. 20.
    Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S (2003) Corr Eng Sci Tech 38(4):303CrossRefGoogle Scholar
  21. 21.
    Munoz I, Garcia J, Guinon JL, Herranz P (2005) Corrosion 61(7):693CrossRefGoogle Scholar
  22. 22.
    Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S (2004) Sci Tech Wel Join 9(1):47CrossRefGoogle Scholar
  23. 23.
    O’Brien RL (1991) Weld handbook, vol 2, 8th edn. AWS, Miami, FlaGoogle Scholar
  24. 24.
    Zhang YM, Zhang SB (1999) Weld J 78(2):53Google Scholar
  25. 25.
    Taban E (2008) J Mater Sci 43:4309. doi: https://doi.org/10.1007/s10853-008-2632-z CrossRefGoogle Scholar
  26. 26.
    Zeron 100 welding guidelines, Weir Mater and Foundries (WMF), Mancester, UK, available at https://doi.org/www.weirmaterials.co.uk
  27. 27.
    Baxter CFG, Stevenson AW, Warburton GR (1993) Proc. 3rd Int. Offshore and Polae Eng. Conf., Singapore, 6–11 June, p 408Google Scholar
  28. 28.
    ASTM E 562-95 (1995) Determining volume count by systematic manual point countGoogle Scholar
  29. 29.
    ASTM E 975-95 (2000) Standart practice for X-ray determination of retained austenite in steel with near random crystallographic orientationGoogle Scholar
  30. 30.
    Lonsdale K (1962) International tables for X-ray crystallography, vol III. Kynoch Press, Birmingham, EnglandGoogle Scholar
  31. 31.
    ASTM E8M-08 (1997) Standard test methods for tension testing of metallic materialsGoogle Scholar
  32. 32.
    Kou S (1987) Welding metallurgy. Wiley, New York, p 239Google Scholar
  33. 33.
    Palmer TA, Debroy T (2000) Metall Mater Trans B 31B:1371CrossRefGoogle Scholar
  34. 34.
    Kuwana T, Kokawa H, Naitoh K-I (1990) Trans Jpn Weld Soc 21(2):157Google Scholar
  35. 35.
    Du Toit M, Pistorius PC (2003) Weld J 82(8):219sGoogle Scholar
  36. 36.
    Debroy T, David SA (1995) Rev Mod Phys 67(1):85CrossRefGoogle Scholar
  37. 37.
    Elliott JF, Gleiser M (1960) Thermochemistry for steelmaking. Addison-Wesley Publishing Company, Reading, USA, p 74Google Scholar
  38. 38.
    Alfaro SCA, Mendoca D, Matos MS (2006) J Mater Proc Tech 179:219CrossRefGoogle Scholar
  39. 39.
    Dong W, Kokawa H, Tsukamoto S, Sato YS, Ogawa M (2004) Metall Mater Trans B 35B:331CrossRefGoogle Scholar
  40. 40.
    Kuwana T, Kokawa H, Muramatsu N (1989) Trans Jpn Weld Soc 20(1):10Google Scholar
  41. 41.
    Gunn RN, Anderson PCJ (1994) Proc. Duplex stainless steels ‘94, Glascow Scotland: paper 30Google Scholar
  42. 42.
    Kotecki DJ, Siewert TA (1992) Weld J 71(5):171sGoogle Scholar
  43. 43.
    De Long WT (1956) Weld J 35:521Google Scholar
  44. 44.
    Palani PK, Murugan N (2006) Mater Manuf Proc 26:431CrossRefGoogle Scholar
  45. 45.
    Muthupandi V, Bala Srinivasan P, Shankar V, Seshadri SK, Sundaresan S (2005) Mater Lett 59:2305CrossRefGoogle Scholar
  46. 46.
    Gavriljuk VG, Berns H (1999) High nitrogen steels, structure, properties manufacture and applications. Springer-Verlag, BerlinCrossRefGoogle Scholar
  47. 47.
    Elmer JW, Allen SM, Eagar TW (1989) Metall Trans A 20(10):2117CrossRefGoogle Scholar
  48. 48.
    Ramirez AJ, Lippold JC, Brandi SD (2003) Metall Mater Trans A 34(A):1575CrossRefGoogle Scholar
  49. 49.
    Matsunaga H, Sato YS, Kokawa H, Kuwana T (1998) Sc Tech Weld Join 3(5):225CrossRefGoogle Scholar
  50. 50.
    Tseng CM, Liou HY, Tsai WT (2003) Mater Sci Eng A344:190CrossRefGoogle Scholar
  51. 51.
    Rawers J, Gruijicic M (1996) Mater Sci Eng A207:188CrossRefGoogle Scholar
  52. 52.
    Pickering FB (1985) Proc. stainless steels 84 Goteborg, 3–4 Sept 1984, The Institute of Metals, London, UK, p 12Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Physical MetallurgyNational Technical University of AthensZografouGreece

Personalised recommendations