Journal of Materials Science

, Volume 44, Issue 23, pp 6356–6362 | Cite as

Temperature-controlled assembly and morphology conversion of CoMoO4·3/4H2O nano-superstructured grating materials

  • Jing Zhao
  • Qing-Sheng WuEmail author
  • Ming Wen


The regular and homogeneous single-crystal CoMoO4·3/4H2O nanorods, with the diameters ca. 100–300 nm and lengths ca. 8–15 μm, have been successfully prepared by a simple and facile precipitation method. Their morphology conversion from broom-like to cage-like structure has been firstly reported through controlling the reaction temperature. The broom-like microbunches were obtained at 50 °C while at 80 °C, dispersive nanorods can be prepared. As the temperature reached 90 °C, the morphology of the products converted to cage-like microspheres. SEM results show that the reaction temperature has a critical role in both the formation of the products and their morphologies. The UV–visible diffuse reflectance absorbance spectra of the products display two intense, broad absorbance bands cover almost the whole ultraviolet and visible region except for a narrow region around 450 nm, which is in the region for purple light. Based on the experimental results, a possible formation mechanism was also proposed. The synthesis strategy is simple, facile, mild, and has a good reproducibility. The as-prepared products may have potential applications in optics, catalysis, and grating materials.


Select Area Electron Diffraction Molybdenum Trioxide CoMoO4 Metal Molybdate Purple Precipitation 



We thank the financial support of the National Natural Science Foundation (No. 50772074) of China, the State Major Research Plan (973) of China (No. 2006CB932302), the Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials (No. 2009KF04), the key program for basic research of Shanghai ST committee (No. 09JC1414100), and the Nano-Foundation of Shanghai in China (No. 0852nm01200).


  1. 1.
    Longo VM, de Figueiredo AT, Campos AB, Espinosa JWM, Hernandes AC, Taft CA, Sambrano JR, Varela JA, Longo E (2008) J Phys Chem A 112:8920CrossRefGoogle Scholar
  2. 2.
    Wang GJ, Long XF, Zhang LZ, Wang GF (2008) J Cryst Growth 310:624CrossRefGoogle Scholar
  3. 3.
    Ryu JH, Kim KM, Mhin SW, Park GS, Eun JW, Shim KB, Lim CS (2008) Appl Phys A: Mater Sci Process 92:407CrossRefGoogle Scholar
  4. 4.
    Bu WB, Xu YP, Zhang N, Chen HR, Hua ZL, Shi JL (2007) Langmuir 23:9002CrossRefGoogle Scholar
  5. 5.
    Dong FQ, Wu QS (2008) Appl Phys A: Mater Sci Process 91:161CrossRefGoogle Scholar
  6. 6.
    Miller JE, Jackson NB, Evans L, Sault AG, Gonzales MM (1999) Catal Lett 58:147CrossRefGoogle Scholar
  7. 7.
    Rodriguez JA, Chaturvedi S, Hanson JC, Brito JL (1999) J Phys Chem 103:770CrossRefGoogle Scholar
  8. 8.
    Eda K, Uno Y, Nagai N, Sotani N, Whittingham MS (2005) J Solid State Chem 178:2791CrossRefGoogle Scholar
  9. 9.
    Rodriguez JA, Chaturvedi S, Hanson JC, Albornoz A, Brito JL (1998) J Phys Chem B 102:1347CrossRefGoogle Scholar
  10. 10.
    Ehrenberg H, Wiesmann M, Garcia-Jaca J, Weitzel H, Fuess H (1998) J Magn Magn Mater 182:152CrossRefGoogle Scholar
  11. 11.
    Kong YM, Peng J, Xin ZF, Xue B, Dong BX, Shen FS, Li L (2007) Mater Lett 61:2109CrossRefGoogle Scholar
  12. 12.
    Wiesmann M, Ehrenberg H, Wltschek G, Zinn P, Weitzel H, Fuess H (1995) J Magn Magn Mater 150:L1CrossRefGoogle Scholar
  13. 13.
    Meng YY, Xiong ZX (2008) Key Eng Mater 368–372:1516CrossRefGoogle Scholar
  14. 14.
    Calafat A, Vivas F, Brito JL (1998) Appl Catal A 172:217CrossRefGoogle Scholar
  15. 15.
    Smith GW (1962) Acta Crystallogr 15:1054CrossRefGoogle Scholar
  16. 16.
    Kashif I, Soliman AA, El-Bahy ZM (2008) J Alloys Compd 452:384CrossRefGoogle Scholar
  17. 17.
    Brito JL, Barbosa AL (1997) J Catal 171:467CrossRefGoogle Scholar
  18. 18.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) Adv Mater 15:353CrossRefGoogle Scholar
  19. 19.
    Cui Y, Lieber CM (2001) Science 291:851CrossRefGoogle Scholar
  20. 20.
    Ding Y, Wan Y, Min YL, Zhang W, Yu SH (2008) Inorg Chem 47:7813CrossRefGoogle Scholar
  21. 21.
    Sen A, Pramanik P (2001) Mater Lett 50:287CrossRefGoogle Scholar
  22. 22.
    Bao J, Bian GZ, Fu YL (1999) Chin J Catal 20:645Google Scholar
  23. 23.
    Peng C, Gao L, Yang SW, Sun J (2008) Chem Commun 43:5601CrossRefGoogle Scholar
  24. 24.
    Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R (2001) J Phys Chem B 105:948CrossRefGoogle Scholar
  25. 25.
    Roosen AR, Carter WC (1998) Physica A 261:232CrossRefGoogle Scholar
  26. 26.
    Matijevic E (1993) Chem Mater 5:412CrossRefGoogle Scholar
  27. 27.
    Sun YG, Yin YD, Mayers BB, Herricks T, Xia YN (2002) Chem Mater 14:4736CrossRefGoogle Scholar
  28. 28.
    Caswell KK, Bender CM, Murphy CJ (2003) Nano Lett 3:667CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Holzwarth NAW, Williams RT (1998) Mater Phys 57:12738Google Scholar
  30. 30.
    Spassky DA, Ivanov SN, Kolobanov VN, Mikhailin VV, Zemskov VN, Zadneprovski BI, Potkin LI (2004) Radiat Meas 38:607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryTongji UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations