Journal of Materials Science

, Volume 44, Issue 23, pp 6302–6309 | Cite as

Prediction of hardness minimum locations during natural aging in an aluminum alloy 6061-T6 friction stir weld

  • W. WooEmail author
  • H. Choo
  • P. J. Withers
  • Z. Feng


This study describes a method that can predict the hardness minimum location as a function of natural aging time in a heat-treatable 6061-T6 Al alloy plate subjected to friction stir welding (FSW). First, temperature distributions were simulated in the FSW plate by finite element modeling. Second, to determine the natural aging kinetics, hardness changes were measured as a function of natural aging time from a number of Al specimens that had been isothermally heat treated at different peak temperatures. Finally, the simulated temperature profiles and the natural aging kinetics were correlated to predict the hardness profiles in the FSW plate. The predicted hardness minimum locations are consistent with the measured hardness profiles in that the hardness moves away from the weld centerline as the aging time increases. Moreover, the predicted hardness minimum is located at the similar position of failure in cross-weld tensile samples.


Friction Stir Welding Friction Stir Welding Natural Aging Hardness Profile Tool Shoulder 



This work was supported by the NSF International Materials Institutes (IMI) Program under contract DMR-0231320. This research was sponsored by the Laboratory Directed Research and Development program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. WW was supported by Nuclear Research and Development Program of the Korea Science and Engineering Foundation funded by the Korean government. PJW is grateful to the EPSRC Lightweight alloys portfolio grant for financial support. The authors would like to thank B. Lovell, S. A. David, C. J. Rawn, and A. Frederick for their help. WW is especially grateful to David Richards for help with the modeling during his visit to Manchester.


  1. 1.
    Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1CrossRefGoogle Scholar
  2. 2.
    Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Int Mater Rev 54:49CrossRefGoogle Scholar
  3. 3.
    Thomas WM, Nicholas ED (1997) Mater Des 18:4CrossRefGoogle Scholar
  4. 4.
    Smith IJ, Lord DDR (2008) In: Seventh international symposium on friction stir welding, TWI, JapanGoogle Scholar
  5. 5.
    Murr LE, Liu G, Mcclure JC (1998) J Mater Sci 33:1243 10.1023/A:1004385928163CrossRefGoogle Scholar
  6. 6.
    Sato YS, Kokawa H, Enomoto M, Jogan S (1999) Metall Mater Trans A 30:2429CrossRefGoogle Scholar
  7. 7.
    Jata KV, Sankaran KK, Ruschau JJ (2000) Metall Mater Trans A 31:2181CrossRefGoogle Scholar
  8. 8.
    Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Mater Sci Eng A 323:160CrossRefGoogle Scholar
  9. 9.
    Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Acta Mater 53:713CrossRefGoogle Scholar
  10. 10.
    Genevois C, Deschamps A, Denquin A, Doisneau-Cottignies B (2005) Acta Mater 53:2447CrossRefGoogle Scholar
  11. 11.
    Kamp N, Sullivan A, Tomasi R, Robson JD (2006) Acta Mater 54:2003CrossRefGoogle Scholar
  12. 12.
    Dumont M, Steuwer A, Deschamps A, Peel M, Withers PJ (2006) Acta Mater 54:4793CrossRefGoogle Scholar
  13. 13.
    Woo W, Choo H, Brown DW, Feng Z (2007) Metall Mater Trans A 38:69CrossRefGoogle Scholar
  14. 14.
    Simar A, Bréchet Y, de Meester B, Denquin A, Pardoen T (2007) Acta Mater 55:6133CrossRefGoogle Scholar
  15. 15.
    Frigaard Ø, Grong Ø, Midling OT (2001) Metall Mater Trans A 32:1189CrossRefGoogle Scholar
  16. 16.
    Shercliff HR, Russell MJ, Taylor A, Dickerson TL (2005) Méc Ind 6:25CrossRefGoogle Scholar
  17. 17.
    Robson JD, Sullivan A (2006) Mater Sci Technol 22:146CrossRefGoogle Scholar
  18. 18.
    Peel MJ, Steuwer A, Withers PJ (2006) Metall Mater Trans A 37:2195CrossRefGoogle Scholar
  19. 19.
    Shercliff HR, Ashby MF (1990) Acta Metall Mater 38:1789CrossRefGoogle Scholar
  20. 20.
    Myhr OR, Grong Ø (1991) Acta Metall Mater 39:2693CrossRefGoogle Scholar
  21. 21.
    Bjørneklett BI, Grong Ø, Myhr OR, Kluken AO (1999) Metall Mater Trans A 30:2667CrossRefGoogle Scholar
  22. 22.
    Chao YJ, Qi X (1998) J Mater Process Manuf Sci 7:215CrossRefGoogle Scholar
  23. 23.
    Chao YJ, Qi X, Tang W (2003) Trans ASME 125:138Google Scholar
  24. 24.
    Ulysse P (2003) Int J Mach Tools Manuf 42:1549CrossRefGoogle Scholar
  25. 25.
    Chen CM, Kovacevic R (2003) Int J Mach Tools Manuf 43:1319CrossRefGoogle Scholar
  26. 26.
    Khandkar MZH, Khan JA, Reynolds AP (2003) Sci Technol Weld Join 8:165CrossRefGoogle Scholar
  27. 27.
    Song M, Kovacevic R (2004) Proc Inst Mech Eng Part B: J Eng Manuf 218:17CrossRefGoogle Scholar
  28. 28.
    Nandan R, Roy GG, Debroy T (2006) Metall Mater Trans A 37:1247CrossRefGoogle Scholar
  29. 29.
    Richards DG, Prangnell PB, Withers PJ, Williams SW, Wescott A, Oliver EC (2006) Mater Sci Forum 524–525:71CrossRefGoogle Scholar
  30. 30.
    Feng Z, Wang XL, David SA, Sklad PS (2007) Sci Technol Weld Join 12:348CrossRefGoogle Scholar
  31. 31.
    Schmidt H, Hattel J, Wert J (2004) Model Simul Mater Sci Eng 12:143CrossRefGoogle Scholar
  32. 32.
    Esmaeili S, Lloyd DJ, Poole WJ (2003) Acta Mater 51:3467CrossRefGoogle Scholar
  33. 33.
    Mrówka-Nowotnik G, Sieniawski J (2005) J Mater Process Technol 162:367CrossRefGoogle Scholar
  34. 34.
    Nelson TW, Steel RJ, Arbegast WJ (2003) Sci Technol Weld Join 8:283CrossRefGoogle Scholar
  35. 35.
    Linton VM, Ripley MI (2008) Acta Mater 56:4319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Neutron Science DivisionKorea Atomic Energy Research InstituteDaejeonSouth Korea
  2. 2.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  3. 3.Manchester Materials Science CenterUniversity of ManchesterManchesterUK
  4. 4.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations