Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6286–6293 | Cite as

Fumed silica/polymer hybrid nanoparticles prepared by redox-initiated graft polymerization in emulsions

  • Mao PengEmail author
  • Zhangjie Liao
  • Zhongming Zhu
  • Honglei Guo
  • Huijun Wang
Article

Abstract

Hybrid particles comprising aggregated fumed silica nanoparticles as the core and hydrophobic polymers existing around the nanoparticles were prepared by ‘grafting from’ polymerization in emulsions. The emulsion polymerization employed cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant, respectively, to stabilize the emulsion polymerization. The polymerization was initiated by the redox reaction between ceric ion Ce(IV) and the amine groups on the surfaces of aminated fumed silica nanoparticles that were modified by 3-aminopropyltriethoxysilane. Infrared spectroscopy and thermogravimetric analysis demonstrated that both poly(methyl methacrylate) (PMMA) and polystyrene (PS) were successfully grafted onto the fumed silica surface. The type of surfactant greatly affected the grafting ratio, monomer-to-polymer conversion, and morphology of the product. When CTAB was used as the surfactant, both the grafting ratio and monomer-to-polymer conversion were lower than when SDS was used, but transmission electron microscopy and light scattering analysis indicated that most of the resultant particles were sub-100 nm hybrid nanoparticles with a non-spherical shape and particles sizes of 75–90 and 57–85 nm for PMMA and PS-grafted fumed silica, respectively. Whereas, when SDS was used as the surfactant, the particles agglomerated to form large irregular clusters or even networks, possibly due to the electrostatic attractions between SDS and Ce(IV) and/or the aminated fumed silica nanoparticles in aqueous solution.

Keywords

Surfactant Sodium Dodecyl Sulfate PMMA Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization 

Notes

Acknowledgments

We greatly appreciate financial support from the National Natural Science Foundation of China (NNSFC No. 20574060 and No. 50773066).

References

  1. 1.
    Pyun J, Jia SJ, Kowalewski T, Patterson GD, Matyjaszewski K (2003) Macromolecules 36:5094CrossRefGoogle Scholar
  2. 2.
    Park JH, Woo S, Kim JH, Kim R, Kim J, Lee SS (2008) Mater Lett 62:3916CrossRefGoogle Scholar
  3. 3.
    Mori H, Seng DC, Zhang M, Muller AHE (2002) Langmuir 18:3682CrossRefGoogle Scholar
  4. 4.
    Jang I, Sung J, Choi H, Chin I (2005) J Mater Sci 40:3021. doi: https://doi.org/10.1007/s10853-005-2381-1 CrossRefGoogle Scholar
  5. 5.
    Xu H, Cui LL, Tong NH, Gu HC (2006) J Am Chem Soc 128:15582CrossRefGoogle Scholar
  6. 6.
    Zhang JG, Coombs N, Kumacheva E (2002) J Am Chem Soc 124:14512CrossRefGoogle Scholar
  7. 7.
    Gittins DI, Caruso F (2001) J Phys Chem B 105:6846CrossRefGoogle Scholar
  8. 8.
    Guyot A, Landfester K, Schork FJ, Wang CP (2007) Prog Polym Sci 32:1439CrossRefGoogle Scholar
  9. 9.
    Auroy P, Auvray L, Léger L (1992) J Colloid Interface Sci 150:187CrossRefGoogle Scholar
  10. 10.
    Ebata K, Furukawa K, Matsumoto N (1998) J Am Chem Soc 120:7367CrossRefGoogle Scholar
  11. 11.
    Zhang ZK, Berns AE, Willbold S, Buitenhuis J (2007) J Colloid Interface Sci 310:446CrossRefGoogle Scholar
  12. 12.
    Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B (2003) Macromol Mater Eng 288:380CrossRefGoogle Scholar
  13. 13.
    Gu SC, Onishi J, Mine EC, Kobayashi Y, Konno M (2004) J Colloid Interface Sci 279:284CrossRefGoogle Scholar
  14. 14.
    Zhou J, Zhang SW, Qiao XG, Li XQ, Wu LM (2006) J Polym Sci A Polym Chem 44:3202CrossRefGoogle Scholar
  15. 15.
    Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Langmuir 21:2124CrossRefGoogle Scholar
  16. 16.
    Prucker O, Rühe J (1998) Macromolecules 31:592CrossRefGoogle Scholar
  17. 17.
    Bachmann S, Wang HY, Albert K, Partch R (2007) J Colloid Interface Sci 309:169CrossRefGoogle Scholar
  18. 18.
    Kim S, Kim E, Kim S, Kim W (2005) J Colloid Interface Sci 292:93CrossRefGoogle Scholar
  19. 19.
    Chen XY, Randall DP, Perruchot C, Watts JF, Patten TE, von Werne T, Armes SP (2003) J Colloid Interface Sci 257:56CrossRefGoogle Scholar
  20. 20.
    von Werne T, Patten TE (1999) J Am Chem Soc 121:7409CrossRefGoogle Scholar
  21. 21.
    Perruchot C, Khan MA, Kamitisi A, Armes SP, von Werne T, Patten TE (2001) Langmuir 17:4479CrossRefGoogle Scholar
  22. 22.
    Wang YP, Pei XW, He ZY, Yuan K (2005) Eur Polym J 41:1326CrossRefGoogle Scholar
  23. 23.
    Barner L, Zwaneveld N, Perera S, Pham Y, Davis TP (2002) J Polym Sci A 40:4180CrossRefGoogle Scholar
  24. 24.
    Hong CY, Li X, Pan CY (2007) Eur Polym J 43:4114CrossRefGoogle Scholar
  25. 25.
    Parvole J, Montfort JP, Billon L (2004) Macromol Chem Phys 25:1369CrossRefGoogle Scholar
  26. 26.
    Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Zydowicz N (2003) Macromolecules 36:7946CrossRefGoogle Scholar
  27. 27.
    Parvole J, Billon L, Montfort JP (2002) Polym Int 51:1111CrossRefGoogle Scholar
  28. 28.
    Kasseh A, Ait-Kadi A, Riedl B, Pierson JF (2003) Polymer 44:1367CrossRefGoogle Scholar
  29. 29.
    Blomberg S, Ostberg S, Harth E, Bosman AW, van Horn B, Hawker CJ (2002) J Polym Sci A 40:1309CrossRefGoogle Scholar
  30. 30.
    Bamford CH, Al-Lamee KG (1994) Macromol Rapid Commun 15:379CrossRefGoogle Scholar
  31. 31.
    Shuckla SR, Athalye AR (1994) J Appl Polym Sci 54:279CrossRefGoogle Scholar
  32. 32.
    Fanta GF, Burr RC, Doane WM (1984) J Appl Polym Sci 29:4449CrossRefGoogle Scholar
  33. 33.
    Mino G, Kaizerman S (1958) J Polym Sci 31:242CrossRefGoogle Scholar
  34. 34.
    Odian G, Kho JHT (1970) J Macromol Sci Chem A 4:317CrossRefGoogle Scholar
  35. 35.
    Gupta KC, Sahoo S (2000) J Appl Polym Sci 76:906CrossRefGoogle Scholar
  36. 36.
    Ranby B, Zuchowska D (1987) Polym J 19:623CrossRefGoogle Scholar
  37. 37.
    Wang YP, Yuan K, Li QL, Wang LP, Gu SJ, Pei XW (2005) Mater Lett 59:1736CrossRefGoogle Scholar
  38. 38.
    Wang H, Peng M, Zheng J, Li P (2008) J Colloid Interface Sci 326:151CrossRefGoogle Scholar
  39. 39.
    Sui KY, Gu LX (2003) J Appl Polym Sci 89:1753CrossRefGoogle Scholar
  40. 40.
    Sarac AS (1999) Prog Polym Sci 24:1149CrossRefGoogle Scholar
  41. 41.
    Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New YorkGoogle Scholar
  42. 42.
    Ming WH, Jones FN, Fu SK (1998) Polym Bull 40:749CrossRefGoogle Scholar
  43. 43.
    Lane WH (1946) Ind Eng Chem Anal Ed 18:295CrossRefGoogle Scholar
  44. 44.
    Patra M, Sinha BK (1998) Macromol Chem Phys 199:311CrossRefGoogle Scholar
  45. 45.
    Bombalski L, Min K, Dong HC, Tang CB, Matyjaszewski K (2007) Macromolecules 40:7429CrossRefGoogle Scholar
  46. 46.
    Valente AJM, Burrows HD, Cruz SMA, Pereira RFP, Ribeiro ACF, Lobo VMM (2008) J Colloid Interface Sci 323:141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mao Peng
    • 1
    Email author
  • Zhangjie Liao
    • 1
  • Zhongming Zhu
    • 1
  • Honglei Guo
    • 1
  • Huijun Wang
    • 1
  1. 1.Department of Polymer Science and EngineeringZhejiang University and Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of EducationHangzhouChina

Personalised recommendations