Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6199–6205 | Cite as

Enhanced wear resistance of hybrid PTFE/Kevlar fabric/phenolic composite by cryogenic treatment

  • Zhao-zhu ZhangEmail author
  • Hui-juan Zhang
  • Fang Guo
  • Kun Wang
  • Wei Jiang
Article

Abstract

Hybrid PTFE/Kevlar fabric was treated by cryogenic approach. The untreated or cryo-treated fabric was incorporated into fabric/phenolic composite for friction and wear tests. It was found that the wear resistance of the fabric/phenolic composite was improved after cryo-treatment, although the friction coefficient increased to a certain extent. SEM observations showed that the roughness of hybrid fabric increased by cryo-treatment, which may enhance the mechanical interlocking of the phenolic resin on the fiber surface. Enhanced fiber/resin adhesion was considered to contribute to the improved wear resistance of cryo-treated fabric/phenolic composite.

Keywords

Wear Resistance Wear Rate Wear Surface Adhesion Strength Composite Coating 

Notes

Acknowledgements

We appreciate the financial support from national Project 973 (Grant No. 2007 CB607601), Fund for Creative Research Groups (Grant NO. 50721062) and National natural science foundation (Grant NO. 50773089).

References

  1. 1.
    Yue CY, Sui GX, Looi HC (2000) Compos Sci Technol 60:421CrossRefGoogle Scholar
  2. 2.
    Blanchet TA, Kennedy FE (1992) Wear 153:229CrossRefGoogle Scholar
  3. 3.
    Craig WD (1964) Lubr Eng 20:456Google Scholar
  4. 4.
    Lancaster JK, Bay RG (1982) ASTM, STP 769:92Google Scholar
  5. 5.
    Zhang ZZ, Xue QJ, Liu WM, Shen WC (1997) Wear 210:151CrossRefGoogle Scholar
  6. 6.
    Li F, Hu KA, Li JL, Zhao BY (2001) Wear 249:877CrossRefGoogle Scholar
  7. 7.
    Lu XC, Wen SZ, Tong J, Chen YT, Ren LQ (1996) Wear 193:48CrossRefGoogle Scholar
  8. 8.
    Zou XP, Kang ET, Neoh KG, Cui CQ, Lim TB (2001) Polymer 42(26):6409CrossRefGoogle Scholar
  9. 9.
    Klaas NV, Marcus K, Kellock C (2005) Tribol Int 38(9):824CrossRefGoogle Scholar
  10. 10.
    Combellas C, Richardson S, Shanahan MER, Thiébault A (2001) Int J Adhesion Adhesives 21(1):59CrossRefGoogle Scholar
  11. 11.
    Cech V, Prikryl R, Balkova R, Grycova A, Vanek J (2002) Compos A 33(10):1367CrossRefGoogle Scholar
  12. 12.
    Pappas D, Bujanda A, Demaree JD, Hirvonen JK, Kosik W, Jensen R, McKnight S (2006) Surf Coat Technol 201(7):4384CrossRefGoogle Scholar
  13. 13.
    Huang HC, Ye DQ, Huang BC (2007) Surf Coat Technol 201(24):9533CrossRefGoogle Scholar
  14. 14.
    Wu GM, Chang CH (2007) Vacuum 81(10):1159CrossRefGoogle Scholar
  15. 15.
    Krump H, Hudec I, Jaššo M, Dayss E, Luyt AS (2006) Appl Surf Sci 252(12):4264CrossRefGoogle Scholar
  16. 16.
    Indumathi J, Bijwe J, Ghosh AK, Fahim M, Krishnaraj N (1999) Wear 225–229:343CrossRefGoogle Scholar
  17. 17.
    Zhang H, Zhang Z, Breidt C (2004) Compos Sci Technol 64:2021CrossRefGoogle Scholar
  18. 18.
    Zhang H, Zhang Z (2004) Compos Sci Technol 64:2031CrossRefGoogle Scholar
  19. 19.
    Guo F, Zhang ZZ, Liu WM, Su FH, Zhang HJ (2009) Tribol Int 42:243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zhao-zhu Zhang
    • 1
    Email author
  • Hui-juan Zhang
    • 1
    • 2
  • Fang Guo
    • 1
    • 2
  • Kun Wang
    • 1
  • Wei Jiang
    • 1
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations