Advertisement

Journal of Materials Science

, Volume 44, Issue 23, pp 6251–6257 | Cite as

Failure behavior of coated nickel-based superalloy under thermomechanical fatigue

  • Z. B. Chen
  • Z. W. Huang
  • Z. G. Wang
  • S. J. ZhuEmail author
Article

Abstract

Thermomechanical fatigue (TMF) is a major life limiting factor for gas turbine blades. In this study, the failure behavior of NiCrAlY overlay coated nickel-based superalloy M963 was investigated under out of phase (OP) TMF. All tests were carried out under mechanical strain control with a cyclic period of 200 s. Results revealed that the fatigue life of high velocity oxygen fuel spraying (HVOF) coated specimen was longer than that of air plasma spraying (APS) coated one, but shorter than that of bare superalloy M963 at a given strain range. It was found that cracking process in the APS coating was different from that in the HVOF coating, which was shown by the sketches to understand the crack initiation and propagation behavior.

Keywords

Crack Initiation Crack Density High Velocity Oxygen Fuel Coated Specimen DBTT 

Notes

Acknowledgements

This work was financially supported by the Center for Interfacial Materials, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Beele W, Marijnissen G, Van Lieshout A (1999) Surf Coat Technol 120–121:61CrossRefGoogle Scholar
  2. 2.
    Schulz U, Leyens C, Fritscher K, Peters M, Saruhan-Brings B, Lavigne O, Dorvaux JM, Poulain M, Mévrel R, Caliez M (2003) Aerosp Sci Technol 7:73CrossRefGoogle Scholar
  3. 3.
    Gleeson B, Mu N, Hayashi S (2009) J Mater Sci 44:1704. doi: https://doi.org/10.1007/s10853-009-3251-z CrossRefGoogle Scholar
  4. 4.
    Théry PY, Poulain M, Dupeux M, Braccini M (2009) J Mater Sci 44:1726. doi: https://doi.org/10.1007/s10853-008-3108-x CrossRefGoogle Scholar
  5. 5.
    Kowalewski R, Mughrabi H (1998) Mater Sci Eng A 247:295CrossRefGoogle Scholar
  6. 6.
    Totemeier TC, Gale WF, King JE (1996) Metall Mater Trans A 27:363CrossRefGoogle Scholar
  7. 7.
    Huang ZW, Wang ZG, Zhu SJ, Yuan FH, Wang FG (2006) Mater Sci Eng A 432:308CrossRefGoogle Scholar
  8. 8.
    Jung A, Schnell A (2008) Int J Fatigue 30:286CrossRefGoogle Scholar
  9. 9.
    Kadioglu Y, Sehitoglu H (1995) J Eng Mater T ASME 117:94Google Scholar
  10. 10.
    Kowalewski R, Mughrabi H (2000) In: Sehitoglu H, Maier HJ (eds) Thermo-mechanical fatigue behavior of materials: third volume, ASTM STP 1371. American Society for Testing and Materials, West Conshohocken, PA, p 3CrossRefGoogle Scholar
  11. 11.
    Nützel R, Affeldt E, Göken M (2008) Int J Fatigue 30:313CrossRefGoogle Scholar
  12. 12.
    Zhang YH, Knowles DM, Withers PJ (1997) Scripta Mater 37:815CrossRefGoogle Scholar
  13. 13.
    Zamrik SY, Renauld ML (2000) In: Sehitoglu H, Maier HJ (eds) Thermo-mechanical fatigue behavior of materials: third volume, ASTM STP 1371. American Society for Testing and Materials, West Conshohocken, PA, p 119CrossRefGoogle Scholar
  14. 14.
    Kwon JY, Lee JH, Jung YG, Paik U (2006) Surf Coat Technol 201:3483CrossRefGoogle Scholar
  15. 15.
    Brandl W, Toma D, Krüger J, Grabke HJ, Matthäus G (1997) Surf Coat Technol 94–95:21CrossRefGoogle Scholar
  16. 16.
    Ajdelsztajn L, Picas JA, Kim GE, Bastian FL, Schoenung J, Provenzano V (2002) Mater Sci Eng A 338:33CrossRefGoogle Scholar
  17. 17.
    Jang HJ, Park DH, Jung YG, Jang JC, Choi SC, Paik U (2006) Surf Coat Technol 200:4355CrossRefGoogle Scholar
  18. 18.
    Yuan FH, Chen ZX, Huang ZW, Wang ZG, Zhu SJ (2008) Corros Sci 50:1608CrossRefGoogle Scholar
  19. 19.
    Hattali ML, Valette S, Ropital F, Mesrati N, Tréheux D (2009) J Mater Sci 44:3198. doi: https://doi.org/10.1007/s10853-009-3426-7 CrossRefGoogle Scholar
  20. 20.
    Okazaki M, Okamoto M, Harada Y (2001) Fatigue Fract Eng M 24:855CrossRefGoogle Scholar
  21. 21.
    Kadioglu Y, Sehitoglu H (1993) In: Sehitoglu H (ed) Thermo-mechanical fatigue behavior of materials: ASTM STP 1186. American Society for Testing and Materials, Philadelphia, p 17CrossRefGoogle Scholar
  22. 22.
    Obrtlík K, Petrenec M, Man J, Polák J, Hrbáček K (2009) J Mater Sci 44:3305. doi: https://doi.org/10.1007/s10853-009-3446-3 CrossRefGoogle Scholar
  23. 23.
    Lee SY, Lu YL, Liaw PK, Chen LJ, Thompson SA, Blust JW, Browning PF, Bhattacharya AK, Aurrecoechea JM, Klarstrom DL (2009) J Mater Sci 44:2945. doi: https://doi.org/10.1007/s10853-009-3391-1 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://doi.org/creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Z. B. Chen
    • 1
  • Z. W. Huang
    • 1
  • Z. G. Wang
    • 1
  • S. J. Zhu
    • 2
    Email author
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Department of Intelligent Mechanical EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations