Journal of Materials Science

, Volume 44, Issue 22, pp 6149–6154 | Cite as

Effect of grain size and Cu-rich phase on the electric properties of CaCu3Ti4O12 ceramics

  • Tao LiEmail author
  • Zhenping Chen
  • Yuling Su
  • Lei Su
  • Jincang Zhang


The CaCu3Ti4O12 ceramics were prepared by the traditional solid-state reaction method under different sintering conditions. The XRD patterns show that crystal structures of the samples are basically single-phase pseudo-cubic, except little second phases of CuO and Cu2O in the samples sintered in air at 1050 and 1100 °C, respectively, for 12 h. The SEM results indicate that the pellet sintered at 1100 °C for 12 h possess larger grain size and more Cu-rich phases at the grain boundaries than the pellet sintered at 1050 °C for 12 h. It is interesting that the pellet sintered at 1050 °C under the pressure of 5 Gpa for 3 h shows smaller grain size (~1 μm) and no Cu-rich phases due to the higher pressure during the sintering process. The results show that the grain size has a reverse effect on the values of the permittivity and the values of breakdown electric field (Eb) and nonlinear coefficient. The pellet sintered at 1100 °C for 12 h exhibits a higher permittivity, but with a lower breakdown electric field (Eb) and a lower nonlinear coefficient due to larger grain size. The pellet sintered at 1050 °C under the pressure of 5 Gpa for 3 h exhibits a lower permittivity, but with a higher breakdown electric field (Eb) and a higher nonlinear coefficient due to smaller grain size. The Cu-rich phases at grain boundaries can raise the resistance of the grain boundary leading to the lower dielectric loss tangent, which has been supported by the results of impedance spectroscopy analysis.


Breakdown Voltage Nonlinear Coefficient Schottky Barrier Height Sinter Condition Dielectric Loss Tangent 



This study is supported by National Natural Science Foundation of China (Project No. 10875107), The Natural Science Foundation of Henan (No. 082300440080), and The Basic Research Plan on Natural Science of the Education Department of Henan Province (Grant No. 2008A140014).


  1. 1.
    Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM (2000) Solid State Commun 115:217CrossRefGoogle Scholar
  2. 2.
    Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 293:673CrossRefGoogle Scholar
  3. 3.
    Brizé V, Gruener G, Wolfman J, Fatyeyeva K, Tabellout M, Gervais M, Gervais F (2006) Mater Sci Eng B 129:135CrossRefGoogle Scholar
  4. 4.
    Subramanian MA, Sleight AW (2002) Solid State Sci 4:347CrossRefGoogle Scholar
  5. 5.
    West AR, Adams TB, Morrison FD, Sinclair DC (2004) J Eur Ceram Soc 24:1439CrossRefGoogle Scholar
  6. 6.
    Grubbs RK, Venturini EL, Clem PG, Richardson JJ, Tuttle BA, Samara GA (2005) Phys Rev B 72:104111CrossRefGoogle Scholar
  7. 7.
    Pan MJ, Bender BA (2005) J Am Ceram Soc 88(9):2611CrossRefGoogle Scholar
  8. 8.
    Fang T-T, Liu CP (2005) Chem Mater 17:5167CrossRefGoogle Scholar
  9. 9.
    Shao SF, Zhang JL, Zheng P, Wang CL (2007) Solid State Commun 142:281CrossRefGoogle Scholar
  10. 10.
    Chung S, Kim ID, Kang SJL (2004) Nat Mater 3:774CrossRefGoogle Scholar
  11. 11.
    Marques VPB, Ries A, Simoes AZ, Ramirez MA, Varela JA, Longo E (2007) Ceram Int 33:1187CrossRefGoogle Scholar
  12. 12.
    Sun D-L, Wu A-Y, Yin S-T (2008) J Am Ceram Soc 91(1):169CrossRefGoogle Scholar
  13. 13.
    Ranabrata M, Anshuman S, Amarnath S, Himadri SE (2005) Ferroelectrics 326:103CrossRefGoogle Scholar
  14. 14.
    Shri Prakash B, Varma KBR (2006) Physica B 382:312CrossRefGoogle Scholar
  15. 15.
    Hutagalung SD, Ooi LY, Ahmad ZA (2009) J Alloy Compd 476:477CrossRefGoogle Scholar
  16. 16.
    Mu C-H, Liu P, He Y, Zhou J-P, Zhang H-W (2009) J Alloy Compd 471:137CrossRefGoogle Scholar
  17. 17.
    Leret P, Fernandez JF, de Frutos J, Fernández-Hevia D (2007) J Eur Ceram Soc 27:3901CrossRefGoogle Scholar
  18. 18.
    Zang GZ, Zhang JL, Zheng P, Wang JF, Wang CL (2005) J Phys D 38(11):1824CrossRefGoogle Scholar
  19. 19.
    Wang JF, Chen HC, Su WB, Zang GZ, Zhang CJ, Wang CM, Qi P (2005) J Electroceram 14:133CrossRefGoogle Scholar
  20. 20.
    Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tao Li
    • 1
    Email author
  • Zhenping Chen
    • 1
  • Yuling Su
    • 1
  • Lei Su
    • 1
  • Jincang Zhang
    • 1
  1. 1.Department of Technology and PhysicsZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations