Journal of Materials Science

, Volume 44, Issue 22, pp 6135–6143 | Cite as

Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization

  • Masanori HiranoEmail author
  • Yoshiko Ichihashi


The precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 and structural change in the course of heating were investigated. The samples were directly formed under hydrothermal conditions at 240 °C for 5 h in the presence of aqueous ammonia via crystallization from co-precipitates that were obtained from precursor solutions of TiOSO4 and NbCl5. The as-prepared niobium-doped anatase-type titania nanoparticles showed bluish color and absorption in the visible region, which was confirmed to be due to the presence of Ti(III) in the solid solutions using electron paramagnetic resonance measurement. The niobium-doped anatase-type titania existed stably without an appearance of any other phases after heating up to 500 °C for 1 h. In the course of heating at 500–800 °C, continual and clear decrease in the lattice parameters a0 and c0 of the anatase was observed, which was followed by the precipitation of Nb2O5 and TiNb2O7 out of the niobium-doped anatase, but the anatase phase was maintained without anatase-to-rutile phase transformation up to 850–1,000 °C. The anatase-to-rutile phase transformation was gradually retarded when the niobium content increased.


Electron Paramagnetic Resonance Rutile Niobium Electron Paramagnetic Resonance Spectrum Nb2O5 



The authors thank Shingo Sato for his assistance. The present work was partly supported by Grant-in Aids No. 21560703 for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. 1.
    Fox MA, Dulay MT (1993) Chem Rev 93:341CrossRefGoogle Scholar
  2. 2.
    O’Regon B, Gratzel M (1991) Nature 353:737CrossRefGoogle Scholar
  3. 3.
    Ferroni M, Guidi V, Martinelli G, Faglia G, Nelli P, Sberveglieri G (1996) Nanostruct Mater 7:709CrossRefGoogle Scholar
  4. 4.
    Shannon RD, Pask JA (1965) J Am Ceram Soc 48:391CrossRefGoogle Scholar
  5. 5.
    Shannon RD, Pask JA (1964) Am Miner 49:1707Google Scholar
  6. 6.
    Mackenzie KJD (1975) Trans J Br Ceram Soc 74:77Google Scholar
  7. 7.
    Suyama Y, Kato A (1978) J Ceram Soc Jpn 86:119 [in Japanese]Google Scholar
  8. 8.
    Hishida S, Tanaka M, Yanagida H (1978) J Ceram Soc Jpn 86:631Google Scholar
  9. 9.
    Leduc CA, Campbell JM, Rossin JA (1996) Ind Eng Chem Res 25:2473CrossRefGoogle Scholar
  10. 10.
    Gennari FC, Pasquevich DM (1998) J Mater Sci 33:1571. doi: CrossRefGoogle Scholar
  11. 11.
    Hirano M, Joji T, Inagaki M, Iwata H (2004) J Am Ceram Soc 87:35CrossRefGoogle Scholar
  12. 12.
    Hirano M, Ota K, Ito T (2005) J Am Ceram Soc 88:3303CrossRefGoogle Scholar
  13. 13.
    Oliveri G, Ramis G, Busca G, Escribano VS (1993) J Mater Chem 3:1239CrossRefGoogle Scholar
  14. 14.
    Rao CNR, Turner A, Honig JM (1959) J Phys Chem 11:173Google Scholar
  15. 15.
    Ding XZ, Liu XH (1998) J Mater Res 13:2556CrossRefGoogle Scholar
  16. 16.
    Deo G, Turek AM, Wachs IE, Machej T, Haber J, Das N, Eckert H, Hirt AM (1992) Appl Catal A 91:27CrossRefGoogle Scholar
  17. 17.
    Dutta PK, Ginwalla A, Hogg B, Patton BR, Chwieroth B, Liang Z, Gouma P, Mills M, Akbar S (1999) J Phys Chem B 103:4412CrossRefGoogle Scholar
  18. 18.
    Hirano M, Ota K, Iwata H (2004) Chem Mater 16:3725CrossRefGoogle Scholar
  19. 19.
    Czanderna AW, Rao CNR, Honig JM (1958) Trans Faraday Soc 54:1069CrossRefGoogle Scholar
  20. 20.
    Yoganarasimhan SR, Rao CNR (1962) Trans Faraday Soc 58:1579CrossRefGoogle Scholar
  21. 21.
    Hirano M, Morikawa H (2003) Chem Mater 15:2561CrossRefGoogle Scholar
  22. 22.
    Hirano M, Matsushima K (2006) J Am Ceram Soc 89:110CrossRefGoogle Scholar
  23. 23.
    Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M (2003) J Solid State Chem 170:39CrossRefGoogle Scholar
  24. 24.
    Hirano M, Date K (2005) J Am Ceram Soc 88:2604CrossRefGoogle Scholar
  25. 25.
    Tanabe K, Okazaki S (1995) Appl Catal A Gen 133:191CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Phys Chem B 102:10871CrossRefGoogle Scholar
  27. 27.
    Zakrzewska K, Radecka M, Rekas M (1997) Thin Solid Films 310:161CrossRefGoogle Scholar
  28. 28.
    Sharma RK, Bhatnagar MC (1999) Sens Actuators B 56:215CrossRefGoogle Scholar
  29. 29.
    Hirano M, Matsushima K (2006) J Nanosci Nanotechnol 6:762CrossRefGoogle Scholar
  30. 30.
    Hirano M, Ito T (2006) J Nanosci Nanotecnol 6:3820CrossRefGoogle Scholar
  31. 31.
    Hirano M, Ito T (2008) Mater Res Bull 43:2196CrossRefGoogle Scholar
  32. 32.
    Spurr RA, Myers H (1957) Anal Chem 29:760CrossRefGoogle Scholar
  33. 33.
    Criado BJ, Real C (1983) J Chem Soc Faraday Trans 1 79:2765CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of EngineeringAichi Institute of TechnologyToyotaJapan

Personalised recommendations