Journal of Materials Science

, Volume 44, Issue 22, pp 6125–6134 | Cite as

Microstructure and mechanical properties of AlN films obtained by plasma enhanced chemical vapor deposition

  • Gustavo SánchezEmail author
  • B. Abdallah
  • P. Tristant
  • C. Dublanche-Tixier
  • M. A. Djouadi
  • M. P. Besland
  • P. Y. Jouan
  • A. Bologna Alles


AlN films were prepared with a microwave plasma enhanced chemical vapor deposition reactor working at different process temperatures in order to obtain polycrystalline 〈0001〉 oriented films for piezoelectric applications. The films developed were characterized in terms of microstructure, composition, and mechanical properties. Crystalline development and a single orientation were obtained at high temperatures, where at the same time an increase in mechanical intrinsic stresses was observed. Well crystallized 〈0001〉 films were obtained at temperature as low as 500 °C. Furthermore, the evolution of microstructure with thickness at higher temperatures showed a single 〈0001〉 orientation with progressive increase of the texture as the thickness increased. This fact was related with changes in the observed microstructure along the film z-axis, evaluated by high resolution transmission electronic microscopy and selected area electron diffraction. Although orientation dispersion of these films, evidenced by the rocking curves FWHM, remained relatively high (>9°), they can be regarded as promising for piezoelectric applications. Annealing tests conducted at relatively high temperatures with films deposited at low temperature indicated that thermal effects have only a major effect during the film growth for the temperature values employed.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Film Growth Misalignment Angle Intrinsic Stress 



The authors wish to acknowledge Eric Gautron for the HRTEM and SAED analysis made at the Institute des Materiaux Jean Rouxel, Université de Nantes, and to Valérie Coudert for AFM images obtained at the SPCTS laboratory, Université de Limoges.


  1. 1.
    Tonisch K, Cimalla V, Foerster Ch, Romanus H, Ambacher O, Dontsov D (2006) Sens Actuators A 132:658CrossRefGoogle Scholar
  2. 2.
    Sánchez G, Wu A, Tristant P, Tixier C, Soulestin B, Desmaison J, Bologna Alles A (2008) Thin Solid Films 516:4868CrossRefGoogle Scholar
  3. 3.
    Sanz-Hervás A, Clement M, Iborra E, Vergara L, Olivares J, Sangrador J (2006) Appl Phys Lett 88:161915CrossRefGoogle Scholar
  4. 4.
    Semond F, Cordier Y, Grandjean N, Natali F, Damilano B, Vézian S, Massies J (2001) Phys Status Solidi A 188:501CrossRefGoogle Scholar
  5. 5.
    Chen CS, Hwang BH, Lu HY, Hsu TC (2002) J Phys D Appl Phys 35:2608CrossRefGoogle Scholar
  6. 6.
    Nouveau C, Djouadi MA, Banakh O, Sanjines R, Levy F (2001) Thin Solid Films 398:490CrossRefGoogle Scholar
  7. 7.
    Ben el Mekki M, Djouadi MA, Guiot E, Mortet V, Pascallon J, Stambouli V, Bouchier D, Mestres N, Nouet G (1999) Surf Coat Technol 116–119:93CrossRefGoogle Scholar
  8. 8.
    Meng WJ, Sell JA, Eesley GL, Perry TA (1993) J Appl Phys 74:2411CrossRefGoogle Scholar
  9. 9.
    Abdallah B, Chala A, Jouan P-Y, Besland MP, Djouadi MA (2007) Thin Solid Films 515:7105CrossRefGoogle Scholar
  10. 10.
    Hwang BH, Chen CS, Lu HY, Hsu TC (2002) Mater Sci Eng A 325:380CrossRefGoogle Scholar
  11. 11.
    de Keijser Th, Mittemeijer E, Rozendaal H (1983) J Appl Crystallogr 16:309CrossRefGoogle Scholar
  12. 12.
    Stoney GG (1909) Proc R Soc London A 82:172CrossRefGoogle Scholar
  13. 13.
    Pauleau Y (2002) In: Nalwa HS (ed) Handbook of thin film materials, vol 1. Academic Press, New YorkGoogle Scholar
  14. 14.
    Chakrabarti K, Chattopadhyay KK, Chauhuri S, Pal AK (1997) Mater Chem Phys 50:50CrossRefGoogle Scholar
  15. 15.
    Kawamoto N, Fujita M, Tatsumi T, Horikoshi Y (2003) Jpn J Appl Phys 42:7209CrossRefGoogle Scholar
  16. 16.
    Oliver WC, Pharr GM (1992) Mater Res Soc Symp Proc 7:1564CrossRefGoogle Scholar
  17. 17.
    Lefki K, Dormans G (1994) J Appl Phys 76:1764–1767CrossRefGoogle Scholar
  18. 18.
    Sanz-Hervás A, Iborra E, Clement M, Sangrador J, Aguilar M (2003) Diamond Relat Mater 12:1186CrossRefGoogle Scholar
  19. 19.
    Meikle S, Nomura H, Nakanishi Y, Hatanaka Y (1990) J Appl Phys 67:483CrossRefGoogle Scholar
  20. 20.
    Lee JW, Cuomo JJ (2005) J Am Ceram Soc 88(7):1977CrossRefGoogle Scholar
  21. 21.
    Mahieu S, Ghekiere P, Depla D, De Gryse R (2006) Thin Solid Films 515:1229CrossRefGoogle Scholar
  22. 22.
    Slack GA, Bartram SF (1975) J Appl Phys 46:89CrossRefGoogle Scholar
  23. 23.
    Jokinen J, Haussalo P, Keinonen J, Ritala M, Riihela D, Leskepi M (1996) Thin Solid Films 289:159CrossRefGoogle Scholar
  24. 24.
    Mahmood A, Rakov N, Xiao M (2003) Mater Lett 57:1925CrossRefGoogle Scholar
  25. 25.
    Doerner MF, Nix WD (1988) Crit Rev Solid State Mater Sci 14:225CrossRefGoogle Scholar
  26. 26.
    Nix WD, Clemens BM (1999) J Mater Res 14:3467CrossRefGoogle Scholar
  27. 27.
    Lebedev V, Jinschek J, Kraüsslich J, Kaiser U, Schröter B, Richter W (2001) J Crystal Growth 230:426CrossRefGoogle Scholar
  28. 28.
    Martin F, Muralt P (2004) J Vac Sci Technol A 22:361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gustavo Sánchez
    • 1
    • 2
    Email author
  • B. Abdallah
    • 3
    • 4
  • P. Tristant
    • 1
  • C. Dublanche-Tixier
    • 1
  • M. A. Djouadi
    • 3
  • M. P. Besland
    • 3
  • P. Y. Jouan
    • 3
  • A. Bologna Alles
    • 2
  1. 1.SPCTS, UMR CNRS 6638, Faculté des Sciences et TechniquesUniversité de LimogesLimogesFrance
  2. 2.Departamento de Ingeniería de Materiales, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Institut des Matériaux Jean Rouxel, IMN, UMR 6502Université de NantesNantesFrance
  4. 4.Atomic Energy Commission Syrian (AECS)DamascusSyrian Arab Republic

Personalised recommendations