Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6117–6124 | Cite as

Fracture toughness of zirconia nanoparticle-filled dental composites

  • K. S. ChanEmail author
  • D. P. Nicolella
  • B. R. Furman
  • S. T. Wellinghoff
  • H. R. Rawls
  • S. E. Pratsinis
Article

Abstract

The fracture toughness of dental composites containing zirconia nanoparticles dispersed in a bisphenol A glycol dimethacrylate-based monomer blend (GTE) was studied for several yttria contents. Three-point bend test bars with and without a notch were tested at ambient temperature to determine elastic modulus, flexure strength, and fracture toughness. The ZrO2 nanoparticles increased the fracture toughness of the nanocomposites compared to previous results for the matrix and Schott glass-filled nanocomposites. X-ray diffraction analyses revealed mostly tetragonal ZrO2 in the nanocomposites before and after testing, in agreement with a theoretical analysis. The enhancement in fracture toughness in ZrO2-filled nanocomposites was caused mainly by the higher values of particle toughness and interface toughness in GTE/ZrO2 compared to those of GTE/Schott glass nanocomposites.

Keywords

Fracture Toughness High Fracture Toughness Crack Deflection Tetragonal ZrO2 Dental Composite 

Notes

Acknowledgements

This work was supported by National Institutes of Health through Grant No. P01DE11688. Technical assistance by Mr. D. E. Moravits, Southwest Research Institute (SwRI), in fracture testing and clerical assistance by Ms. A. Matthews and Ms. L. Mesa, SwRI, in the preparation of this manuscript is acknowledged.

References

  1. 1.
    Furman B, Rawls HR, Wellinghoff ST, Dixon H, Nicolella D (2000) Crit Rev Biomed Eng 28:439CrossRefGoogle Scholar
  2. 2.
    Rawls HR, Furman B, Wellinghoff ST, Nicolella D, Dixon H, Ong JL, Park Y-J, Norling GK (2000) J Korean Res Soc Dent Mater 27:3Google Scholar
  3. 3.
    Park Y-J, Chae K-H, Rawls HR (1999) Dent Mater 15:120CrossRefGoogle Scholar
  4. 4.
    Chan DCN, Titus HW, Chung KH, Dixon H, Wellinghoff ST, Rawls HR (1999) Dent Mater 15:219CrossRefGoogle Scholar
  5. 5.
    Rawls HR, Wellinghoff VT, Norling BK, Leamon SH, Swynnerton NF, Wellinghoff ST (1997) ACS Polym Prepr 38(2):167Google Scholar
  6. 6.
    Wellinghoff ST, Dixon H, Nicolella DP, Norling BK, Rawls HR (1998) Metal oxide nanoparticle-polymer composites: structure property relationships, dental, and other applications. In: Fine, ultrafine and nano powders. Business Communication, NorwalkGoogle Scholar
  7. 7.
    Schulz H, Madler L, Pratsinis SE, Burtscher P, Mozner N (2005) Adv Funct Mater 15(5):830CrossRefGoogle Scholar
  8. 8.
    Schulz H, Pratsinis SE, Rüegger H, Zimmermann J, Klapdohr S, Salz U (2008) Colloid Surf A 315:79. doi: https://doi.org/10.1016/j.colsurfa.2007.07.016 CrossRefGoogle Scholar
  9. 9.
    Chan KS, Nicolella DP, Furman BR, Lee Y-D, Wellinghoff S, Rawls R (2007) Eng Fract Mech 74:1857CrossRefGoogle Scholar
  10. 10.
    Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ (2000) Acta Mater 50:4555CrossRefGoogle Scholar
  11. 11.
    Lange FF (1982) J Mater Sci 17:240. doi: https://doi.org/10.1007/BF00809059 CrossRefGoogle Scholar
  12. 12.
    Evans AG, Cannon RM (1986) Acta Metall 34(5):761CrossRefGoogle Scholar
  13. 13.
    McMeeking RM, Evans AG (1982) J Am Ceram Soc 65:242CrossRefGoogle Scholar
  14. 14.
    Zeng D, Katsube N, Soboyejo WO (2004) Mech Mater 36:1057CrossRefGoogle Scholar
  15. 15.
    Mueller R, Jossen R, Pratsinis SE, Watson M, Akhtar MK (2004) J Am Ceram Soc 87:197CrossRefGoogle Scholar
  16. 16.
    Jossen R, Mueller R, Pratsinis SE, Watson M, Akhtar MK (2005) Nanotechnology 16:S609CrossRefGoogle Scholar
  17. 17.
    ASTM E399-90 (1999) Annual book of ASTM standards, vol 03.01. ASTM, West Conshohocken, p 422Google Scholar
  18. 18.
    Jossen R, Heine MC, Pratsinis SE, Akhtar MK (2006) CVD J 12:614Google Scholar
  19. 19.
    Faber KT, Evans AG (1983) Acta Metall 31:565CrossRefGoogle Scholar
  20. 20.
    Liu AF (2005) Mechanics and mechanisms of fracture: an introduction. ASM International, Materials Park, p 298Google Scholar
  21. 21.
    Matsumoto RLK (1987) J Am Ceram Soc 70(12):C-366CrossRefGoogle Scholar
  22. 22.
    Suresh A, Mayo MJ, Porter WD (2003) J Mater Res 18:2912CrossRefGoogle Scholar
  23. 23.
    Joint Committee on Powder Diffraction Files, International Center for Diffraction Data, Swarthmore, PA, 1992Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • K. S. Chan
    • 1
    Email author
  • D. P. Nicolella
    • 1
  • B. R. Furman
    • 2
    • 4
  • S. T. Wellinghoff
    • 1
  • H. R. Rawls
    • 2
  • S. E. Pratsinis
    • 3
  1. 1.Southwest Research Institute®San AntonioUSA
  2. 2.University of Texas Health Science CenterSan AntonioUSA
  3. 3.Particle Technology Laboratory, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  4. 4.Southwest Research Institute®San AntonioUSA

Personalised recommendations