Journal of Materials Science

, Volume 44, Issue 22, pp 6110–6116 | Cite as

Nitrogen-substituted TiO2: investigation on the photocatalytic activity in the visible light range

  • Franck TessierEmail author
  • Cordt Zollfrank
  • Nahum Travitzky
  • Hans Windsheimer
  • Odile Merdrignac-Conanec
  • Jean Rocherullé
  • Peter Greil


Nitrogen-doped titanium oxides are attractive materials for the degradation of organic pollutants in water due to their photocatalytic activity in the visible light range. The evolution of the photocatalytic properties was studied on a number of TiOxNy powder samples where x varied from 2 to 0 (TiO2 to TiN) through increasing the nitrogen content (y = 0–1). X-ray diffraction and Raman spectroscopy showed that an anatase type TiOxNy was obtained at low nitrogen contents (<2 wt%). With increasing nitrogen content a structural transition from anatase to cubic TiN was observed. Electron spin resonance measurements of the TiOxNy samples confirmed the presence of unpaired electrons and defects for the TiOxNy materials with low nitrogen content (<2 wt%). The photo-induced activity of the TiOxNy materials was evaluated under VIS illumination of solutions containing methylene blue as an organic probe. The TiOxNy samples exhibited an improved photocatalytic activity under visible light illumination compared to TiO2 at nitrogen levels lower than 2 wt%. A photocatalytic activity could not be detected at nitrogen levels higher than 10 wt% and after conversion of the TiOxNy into the cubic phase. Optimum photocatalytic activity in the visible range can be achieved at nitrogen levels lower than 2 wt% for TiOxNy materials.


TiO2 Electron Spin Resonance Methylene Blue Photocatalytic Activity Nitrogen Content 



Financial support from the bilateral program Procope (2006–2007) between Egide-French Foreign Affairs and the German Academic Exchange Service (DAAD) is gratefully acknowledged.


  1. 1.
    Kaneko M, Okura I (2002) Photocatalysis: science and technology. Springer, Kodansha, p 109Google Scholar
  2. 2.
    Boujday S, Wünsch F, Portes P, Bocquet JF, Colbeau-Justin C (2004) Sol Energy Mater Sol Cells 83:421CrossRefGoogle Scholar
  3. 3.
    Kudo A, Kato H, Tsuji I (2004) Chem Lett 3:1534CrossRefGoogle Scholar
  4. 4.
    Domen K, Hara M, Kondo JN, Takata T, Kudo A, Kobayashi H, Inoue Y (2001) Korean J Chem Eng 18:862CrossRefGoogle Scholar
  5. 5.
    Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Electrochemistry 70:463Google Scholar
  6. 6.
    Bahnemann D (2004) Sol Energy 77:445CrossRefGoogle Scholar
  7. 7.
    Licht S (2003) J Phys Chem B 107:4253CrossRefGoogle Scholar
  8. 8.
    Kudo A (2007) Int J Hydrogen Energy 32:2673CrossRefGoogle Scholar
  9. 9.
    Marchand R, Tessier F, Le Sauze A, Diot N (2001) Int J Inorg Mater 3:1143CrossRefGoogle Scholar
  10. 10.
    Tessier F, Marchand R (2003) J Solid State Chem 171:143CrossRefGoogle Scholar
  11. 11.
    Tessier F, Maillard P, Cheviré F, Domen K, Kikkawa S (2009) J Ceram Soc Jap 117(1):1CrossRefGoogle Scholar
  12. 12.
    Serpone N (2006) J Phys Chem B 100:24287CrossRefGoogle Scholar
  13. 13.
    Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483CrossRefGoogle Scholar
  14. 14.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  15. 15.
    Maeda K, Domen K (2007) J Phys Chem C 111:7851CrossRefGoogle Scholar
  16. 16.
    Li D, Haneda H (2004) J Photochem Photobiol A Chem 160:203CrossRefGoogle Scholar
  17. 17.
    Li D, Haneda H, Hishita S, Ohashi N (2005) Mater Sci Eng B 117:67CrossRefGoogle Scholar
  18. 18.
    Beranek R, Kisch H (2008) Photochem Photobiol Sci 7:40CrossRefGoogle Scholar
  19. 19.
    Nishijima K, Ohtani B, Yan X, Kamai T, Chiyoya T, Tsubota T, Murakami N, Ohno T (2007) Chem Phys 339:64CrossRefGoogle Scholar
  20. 20.
    Martinez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Adv Funct Mater 17:3348CrossRefGoogle Scholar
  21. 21.
    Andreozzi R, Caprio V, Insola A, Marotta R (1999) Catal Today 53:51CrossRefGoogle Scholar
  22. 22.
    Bhattacharjee S, Shah YT (1998) Rev Chem Eng 14:1CrossRefGoogle Scholar
  23. 23.
    Boultif A, Louer D (1991) J Appl Cryst 24:987CrossRefGoogle Scholar
  24. 24.
    Gruner W, Wollein B, Lengauer W (2004) Microchim Acta 146:1CrossRefGoogle Scholar
  25. 25.
    Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) J Raman Spectrosc 26:57CrossRefGoogle Scholar
  26. 26.
    Ding ZH, Yao B, Qiu LX, Lv TQ (2006) J Alloys Compd 421(1–2):247CrossRefGoogle Scholar
  27. 27.
    Spengler W, Kaiser R, Christensen AN, Mueller-Vogt G (1978) Phys Rev B Solid State 17(3):1095CrossRefGoogle Scholar
  28. 28.
    Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15(1):161CrossRefGoogle Scholar
  29. 29.
    Yamamoto Y, Moribe S, Ikoma T, Akiyama K, Zhang Q, Saito F, Tero-Kubota S (2006) Mol Phys 104(10–11):1733CrossRefGoogle Scholar
  30. 30.
    Howe RF, Grätzel M (1987) J Phys Chem 91:3906CrossRefGoogle Scholar
  31. 31.
    Qin H, Gu G, Liu S (2007) Rare Metals 26(3):254CrossRefGoogle Scholar
  32. 32.
    Sakthivel S, Kisch H (2003) Chem Phys Chem 4:487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Franck Tessier
    • 1
    Email author
  • Cordt Zollfrank
    • 2
  • Nahum Travitzky
    • 2
  • Hans Windsheimer
    • 2
  • Odile Merdrignac-Conanec
    • 1
  • Jean Rocherullé
    • 1
  • Peter Greil
    • 2
  1. 1.UMR CNRS 6226 “Sciences Chimiques de Rennes”, équipe “Verres et Céramiques”, groupe “Matériaux Nitrures”Rennes CedexFrance
  2. 2.Department of Materials Science and Engineering-3, Glass and CeramicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany

Personalised recommendations