Journal of Materials Science

, Volume 44, Issue 23, pp 6233–6246 | Cite as

Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels

  • Karima Bertal
  • Joanna Shepherd
  • C. W. Ian Douglas
  • Jeppe Madsen
  • Andrew Morse
  • Steve Edmondson
  • Steven P. Armes
  • Andrew Lewis
  • Sheila MacNeil
Article

Abstract

Wound infection is a common complication often resulting in delayed healing with adverse clinical and financial consequences. Current antimicrobial treatments are far from ideal, side effects can include both bacterial resistance and toxicity. As a result, a great deal of effort over the last 20 years has been spent on investigating new forms of antimicrobial dressings. Here, we report the unexpected antimicrobial activity of a relatively new biocompatible thermo-responsive PHPMA–PMPC–PHPMA triblock copolymer gelator [where PHPMA denotes poly(2-hydroxypropyl methacrylate) and PMPC denotes poly(2-(methacryloyloxy)ethyl phosphorylcholine)]. In a radial diffusion assay, a 20% w/v copolymer gel produced an inhibitory zone up to six times greater than the corresponding control against Staphylococcus aureus. Similarly, in a broth inhibition assay the same copolymer reduced bacterial growth by 45% compared with control experiments conducted in the absence of any copolymer. Moreover, addition of the copolymer to a 3D-infected skin model reduced bacterial recovery by 38% compared to that of controls over 24–48 h. This is particularly relevant since these antimicrobial triblock copolymers were recently shown to be non-toxic when exposed to a tissue-engineered skin model. This antimicrobial activity was also successfully immobilised by grafting PMPC–PHPMA diblock copolymer brushes onto silicon wafers. Our results indicate that both PMPC–PHPMA diblock and PHPMA homopolymer brushes exhibit antimicrobial activity. Our hypothesis for the mode of action is that the moderately hydrophobic PHPMA chains penetrate the bacterial membrane, causing leakage of the cell contents. In summary, these gels and surfaces offer a promising new approach to antimicrobial dressings.

Notes

Acknowledgements

We thank the Algerian government for funding a PhD studentship for K. Bertal. S. P. Armes is a recipient of a 5-year Royal Society/Wolfson Research Merit Award. We thank Biocompatibles for CASE support of two PhD studentships for K. Bertal and J. Madsen, for donating the MPC monomer and also for permission to publish this study.

References

  1. 1.
    Farage MA, Miller KW, Elsner P, Maibach HI (2008) Aging Clin Exp Res 20:195PubMedGoogle Scholar
  2. 2.
    Singer AJ, Clark RAF (1999) New Engl J Med 341:738PubMedCrossRefGoogle Scholar
  3. 3.
    Scheinfeld N (2005) Dermatol Online J 11(3):8PubMedGoogle Scholar
  4. 4.
    Bowler PG, Duerden BI, Amstrong DG (2001) Clin Microbiol Rev 14:244PubMedCrossRefGoogle Scholar
  5. 5.
    Hermans HM (2006) Am J Nurs 106:60PubMedGoogle Scholar
  6. 6.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Burns 33:139PubMedCrossRefGoogle Scholar
  7. 7.
    Faulkner DM, Sutton ST, Hesford JD, Faulkner CB, Major DA, Hellewell TB, Laughon MM, Rodeheaver GT, Edlich RF (1997) Am J Emerg Med 15:20PubMedCrossRefGoogle Scholar
  8. 8.
    Ilker FM, Nusslein K, Tew GN, Coughlin EB (2004) J Am Chem Soc 126:15870PubMedCrossRefGoogle Scholar
  9. 9.
    Eren T, Som A, Rennie JR, Nelson CF, Urgina Y, Nusslein K, Coughlin EB, Tew GN (2008) Macromol Chem Phys 209:516CrossRefGoogle Scholar
  10. 10.
    Kuroda K, Caputo GA, DeGrado WF (2009) Chemistry 15:1123PubMedGoogle Scholar
  11. 11.
    Madsen J, Armes SP, Lewis AL (2006) Macromolecules 39:7455CrossRefADSGoogle Scholar
  12. 12.
    Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biomacromolecules 9:2265PubMedCrossRefGoogle Scholar
  13. 13.
    Shepherd J, Douglas I, Rimmer S, Swanson L, MacNeil S (2009) Tissue Eng Part C 15(3):475CrossRefGoogle Scholar
  14. 14.
    Tsarevsky NV, Matyjaszewski K (2005) Macromolecules 38:3087CrossRefADSGoogle Scholar
  15. 15.
    Tsarevsky NV, Matyjaszewski K (2002) Macromolecules 35:9009CrossRefADSGoogle Scholar
  16. 16.
    Ostmark E, Harrison S, Wooley KL, Malmstrom EE (2007) Biomacromolecules 8:1138PubMedCrossRefGoogle Scholar
  17. 17.
    Ghosh MM, Boyce SG, Layton C, Freedlander E, MacNeil S (1997) Ann Plast Surg 39:390PubMedCrossRefGoogle Scholar
  18. 18.
    Schaberg DR, Culver DH, Gaynes RP (1991) Am J Med 91:72SPubMedCrossRefGoogle Scholar
  19. 19.
    Fleischmann W, Meyer H, Baer AV (1996) J Hosp Infect 34:107PubMedCrossRefGoogle Scholar
  20. 20.
    Eliott D, Kufera JA, Myers RA (2000) Am J Surg 179:361CrossRefGoogle Scholar
  21. 21.
    Church D, Elsayeed S, Reid O, Winston B, Lindsay R (2006) Clin Microbiol Rev 19:403PubMedCrossRefGoogle Scholar
  22. 22.
    Jones MV, Herd TM, Christie HJ (1989) Microbios 58:49PubMedGoogle Scholar
  23. 23.
    Brogden KA (2005) Nat Rev Microbiol 3:238PubMedCrossRefGoogle Scholar
  24. 24.
    Edlich RF, Schmolka IR, Prusak MP, Edgerton MT (1973) J Surg Res 14:277PubMedCrossRefGoogle Scholar
  25. 25.
    Rodeheaver GT, Kurtz L, Kircher BJ, Edlich RF (1980) Ann Emerg Med 11:572CrossRefGoogle Scholar
  26. 26.
    Rodeheaver GT, Smith SL, Thacker JG, Edgerton MT, Edlich RF (1975) Am J Surg 129:241PubMedCrossRefGoogle Scholar
  27. 27.
    Holder IA, Durkee P, Supp AP, Boyce ST (2003) Burns 29:445PubMedCrossRefGoogle Scholar
  28. 28.
    Martineau L, Dosch HM (2006) Burns 32:748PubMedCrossRefGoogle Scholar
  29. 29.
    Jones SA, Bowler PG, Walker M, Parsons D (2004) Wound Repair Regen 12:288PubMedCrossRefGoogle Scholar
  30. 30.
    Steer JA, Papini RPG, Wilson APR, McGrouther DA, Parkhouse N (1996) Burns 22:177PubMedCrossRefGoogle Scholar
  31. 31.
    Kuroda K, DeGrado WF (2005) J Am Chem Soc 127:4128PubMedCrossRefGoogle Scholar
  32. 32.
    Madsen J, Armes SP, Bertal K, MacNeil S, Lewis A (2009) Biomacromolecules (in press)Google Scholar
  33. 33.
    Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Res Microbiol 156:506PubMedCrossRefGoogle Scholar
  34. 34.
    Tebbs SE, Elliott TSJ (1994) Eur J Clin Microbiol Infect Dis 13:111PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karima Bertal
    • 1
  • Joanna Shepherd
    • 1
    • 2
  • C. W. Ian Douglas
    • 2
  • Jeppe Madsen
    • 3
  • Andrew Morse
    • 3
  • Steve Edmondson
    • 4
  • Steven P. Armes
    • 3
  • Andrew Lewis
    • 5
  • Sheila MacNeil
    • 1
  1. 1.Department of Engineering MaterialsThe University of Sheffield, The Kroto Research InstituteSheffieldUK
  2. 2.Department of Oral Pathology, School of Clinical DentistryUniversity of SheffieldSheffieldUK
  3. 3.Department of ChemistryThe University of SheffieldSheffieldUK
  4. 4.Department of MaterialsLoughborough UniversityLoughboroughUK
  5. 5.Biocompatibles UK LtdSurreyUK

Personalised recommendations