Nanosilica/PMMA composites obtained by the modification of silica nanoparticles in a supercritical carbon dioxide–ethanol mixture
- 717 Downloads
- 40 Citations
Abstract
Nanosilica/poly(methyl methacrylate) (PMMA) composites are used to improve the mechanical properties of neat PMMA polymer. In order to obtain superior mechanical properties, it is essential to achieve good bonding between the SiO2 nanoparticles and the PMMA matrix, which is typically achieved by coating silica nanoparticles with silane coupling agents. In this study, conventional and supercritical coating methods were investigated together with their influence on the mechanical properties of the obtained nanosilica/PMMA composites. The results indicate advantageous properties of nanosilica modified in the supercritical phase of carbon dioxide and ethanol in terms of particle size distribution, amount of coated silane, and dispersion in the PMMA matrix. Careful dispersion of the starting silica nanoparticles in ethanol at low temperatures in order to obtain a nanosilica sol plays an important role in deagglomeration, dispersion, and the coating process. The resulting nanosilica/PMMA composite containing nanoparticles obtained by supercritical processing of the nanosilica sol showed an increase in hardness by 44.6% and elastic modulus by 25.7% relative to neat PMMA, as determined using the nanoindentation technique. The dynamic mechanical analysis reveals that addition of nanoparticles as nanosilica sol and nanosilica gel enhances composite storage modulus by about 54.3 and 46.5% at 40 °C. At the same temperature, incorporation of modified silica nanoparticles with conventional method leads to an increase of 15.9% for the storage modulus, probably due to a large silica particle size and lower silane content in this sample.
Keywords
PMMA Silica Particle Silica Nanoparticles Dynamic Mechanical Analysis Thermal Gravimetric AnalysisNotes
Acknowledgements
The authors wish to acknowledge the financial support from the Ministry of Science and Technological Development Republic of Serbia through projects E!3524 and E!4040. In addition, the authors would like to thank CSM Instruments SA and Mr G. Favaro for providing the equipment for and Dr J. Nohava for assistance in the nanomechanical tests.
References
- 1.Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, Calberg C, Jerome R (2007) J Therm Anal Calorim 87:101CrossRefGoogle Scholar
- 2.Garcia N, Corrales T, Guzman J, Tiemblo P (2007) Polym Degrad Stab 92:635CrossRefGoogle Scholar
- 3.Huang YQ, Jiang SL, Wu LB, Hua YQ (2004) Polym Test 23:9CrossRefGoogle Scholar
- 4.Jesionowski T, Krysztafkiewicz A (2001) Appl Surf Sci 172:18CrossRefGoogle Scholar
- 5.Chen H, Zhou SX, Gu GX, Wu LM (2005) J Dispers Sci Technol 26:27CrossRefGoogle Scholar
- 6.Mahaling RN, Kumar S, Rath T, Das CK (2007) J Elastomers Plastics 39:253CrossRefGoogle Scholar
- 7.Liu Q, Ding J, Chambers DE, Debnath S, Wunder SL, Baran DR (2001) J Biomed Mater Res 57:384CrossRefGoogle Scholar
- 8.Ven Hoven BAM, DeGee AJ, Werner A, Davidson CL (1996) Biomaterials 17:735CrossRefGoogle Scholar
- 9.Daniels MW, Sefcik J, Francis LF, McCormic AV (1999) J Colloid Interface Sci 219:351CrossRefGoogle Scholar
- 10.Hong SG, Lin JJ (1997) J Polym Sci B Polym Phys 35:2063CrossRefGoogle Scholar
- 11.Wu YH, Jada S, Xu R (1998) J Mater Res 13:1204CrossRefGoogle Scholar
- 12.Tsubokawa N, Shirai Y, Tsuchida H, Handa S (1994) J Polym Sci A Polym Chem 32:2327CrossRefGoogle Scholar
- 13.Tsubokawa N, Ishida H (1992) Polym J 24:809CrossRefGoogle Scholar
- 14.Cao C, Fadeev AY, McCarthy TJ (2001) Langmuir 17:757CrossRefGoogle Scholar
- 15.Loste E, Fraile J, Fanovich MA, Woerlee GF, Domingo C (2004) Adv Mater 16:739CrossRefGoogle Scholar
- 16.Wang ZW, Wang TJ, Wang ZW, Jin Y (2004) Powder Technol 139:148CrossRefGoogle Scholar
- 17.Klapperich C, Komvopoulos K, Pruitt L (2001) ASME J Tribol 123:624CrossRefGoogle Scholar
- 18.Nelea V, Morosanu C, Iliescu M, Mihailescu IN (2003) Surf Coat Technol 173:315CrossRefGoogle Scholar
- 19.Morsi K, Patel VV, Moon KS, Garay JE (2008) J Mater Sci 43:4050. doi: https://doi.org/10.1007/s10853-007-2225-2 CrossRefGoogle Scholar
- 20.Olek M, Kempa K, Jurga S, Giersig M (2005) Langmuir 21:3146CrossRefGoogle Scholar
- 21.Lin DC, Horkay F (2008) Soft Mater 4:669CrossRefGoogle Scholar
- 22.Uskokovic PS, Tang CY, Tsui CP, Ignjatovic N, Uskokovic DP (2007) J Eur Ceram Soc 27:1559CrossRefGoogle Scholar
- 23.Shen L, Phang IY, Chen L, Liu T, Zeng K (2004) Polymer 45:3341CrossRefGoogle Scholar
- 24.Lam CK, Lau KT (2006) Compos Struct 75:553CrossRefGoogle Scholar
- 25.Treece MA, Oberhauser JP (2007) J Appl Polym Sci 103:884CrossRefGoogle Scholar
- 26.Wang Y, Li Y, Zhang R, Huang L, He W (2006) Polym Compos 27:282CrossRefGoogle Scholar
- 27.Du M, Zheng Y (2007) Polym Compos 28:198CrossRefGoogle Scholar
- 28.Secuianu C, Feroiu V, Geana D (2008) J Supercrit Fluids 47:109CrossRefGoogle Scholar
- 29.Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
- 30.Wang ZW, Wang TJ, Wang ZW, Jin Y (2006) J Supercrit Fluids 37:125CrossRefGoogle Scholar
- 31.Posthumus W, Magusin PCMM, Brokken-Zijp JCM, Tinnemans AHA, Vander-Linde R (2004) J Colloid Interface Sci 269:109CrossRefGoogle Scholar
- 32.Stojanović D, Vuković G, Orlović A, Uskoković PS, Aleksić R, Bibić N, Dramićanin M (2007) Ind Eng Res 4:93Google Scholar
- 33.Ghosh SK, Deguchi S, Mukai S, Tsujii K (2007) J Phys Chem B 111:8169CrossRefGoogle Scholar
- 34.Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Macromolecules 19:2160CrossRefGoogle Scholar
- 35.Ciprari D, Jacob K, Tannenbaum R (2006) Macromolecules 39:6565CrossRefGoogle Scholar
- 36.Hu Y-H, Chen C-Y, Wang C-C (2004) Polym Degrad Stab 84:545CrossRefGoogle Scholar
- 37.Liu YL, Hsu CY, Hsu KY (2005) Polymer 46:1851CrossRefGoogle Scholar
- 38.Tai Y, Qian J, Zhang Y, Huang J (2008) Chem Eng J 141:354CrossRefGoogle Scholar