Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 6035–6039 | Cite as

Synthesis and mechanical behavior of ternary Mg–Cu–Dy in situ bulk metallic glass matrix composite

  • X. F. WuEmail author
  • Y. Si
  • Z. Y. Suo
  • Y. Kang
  • K. Q. Qiu
Article

Abstract

In situ Mg phase reinforced Mg70Cu17Dy13 bulk metallic glass (BMG) matrix composite with diameter of 3 mm was fabricated by conventional Cu-mold casting method. The results show that the Mg-based BMG matrix composite exhibits some work hardening except for initial elastic deformation, a high fracture compressive strength of 702 MPa, which is 1.125 times higher than single-phase Mg60Cu27Dy13 BMG and some plastic strain of 0.81%. The improvement of the mechanical properties is attributed to the fact that the Mg phase distributed in the amorphous matrix of the alloy has some effective load bearing and plastic deformation ability to restrict the expanding of shear bands and cracks and produce its own plastic deformation, which was proved by the shear deforming and fracturing mode and the fracture surfaces characterized by the vein pattern, severe remelting, and the very rough and bumpy region of the alloy.

Keywords

Shear Band Bulk Metallic Glass Vein Pattern High Fracture Strength Amorphous Matrix Composite 

Notes

Acknowledgements

Funding by the Natural Science Foundation of Liaoning Province under Grant No. 20032137 is gratefully acknowledged.

References

  1. 1.
    Dandliker RB, Conner RD, Johnson WL (1998) J Mater Res 13:2896CrossRefGoogle Scholar
  2. 2.
    Wang G, Shen J, Qin QH, Sun JF, Stachurski ZH, Zhou BD (2005) J Mater Sci 40:4561. doi: https://doi.org/10.1007/10853-005-3081-6 CrossRefGoogle Scholar
  3. 3.
    Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84:2901CrossRefGoogle Scholar
  4. 4.
    Hu X, Ng SC, Li Y (2003) Acta Mater 51:561CrossRefGoogle Scholar
  5. 5.
    Kinaka M, Kato H, Hasegawa M, Inoue A (2008) Mater Sci Eng A494:299CrossRefGoogle Scholar
  6. 6.
    Scudino S, Surreddi KB, Sager S (2008) J Mater Sci 43:4518. doi: https://doi.org/10.1007/s10853-008-2647-5 CrossRefGoogle Scholar
  7. 7.
    Sun YF, Todaka Y, Umemoto M (2008) J Mater Sci 43:7457. doi: https://doi.org/10.1007/s10853-008-2634-x CrossRefGoogle Scholar
  8. 8.
    Singh D, Yadav TP, Tiwari RS (2009) J Mater Sci 44:3883. doi: https://doi.org/10.1007/s10853-009-3530-8 CrossRefGoogle Scholar
  9. 9.
    Xu YK, Xu J (2003) Scr Mater 49:843CrossRefGoogle Scholar
  10. 10.
    Xu YK, Ma H, Xu J, Ma E (2005) Acta Mater 53:1857CrossRefGoogle Scholar
  11. 11.
    Li J, Wang L, Zhang HF, Hua ZQ, Cai HN (2007) Mater Lett 61:2217CrossRefGoogle Scholar
  12. 12.
    Pan DG, Zhang HF, Wang AM, Hu ZQ (2006) Appl Phys Lett 89:1904Google Scholar
  13. 13.
    Ma H, Xu J, Ma E (2003) Appl Phy Lett 83:2372CrossRefGoogle Scholar
  14. 14.
    Subhash G, Dowding RJ, Kecskes LJ (2002) Mater Sci Eng A334:33CrossRefGoogle Scholar
  15. 15.
    Chen G, Ferry M (2006) J Mater Sci 41:4643. doi: https://doi.org/10.1007/s10853-006-0059-y CrossRefGoogle Scholar
  16. 16.
    Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y (2005) Phys Rev Lett 94:125510CrossRefGoogle Scholar
  17. 17.
    Bian Z, Chen GL, He G, Hui XD (2001) Mater Sci Eng 316A:135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. F. Wu
    • 1
    Email author
  • Y. Si
    • 1
  • Z. Y. Suo
    • 2
  • Y. Kang
    • 1
  • K. Q. Qiu
    • 2
  1. 1.School of Materials and Chemical EngineeringLiaoning University of TechnologyJinzhouPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShenyang University of TechnologyShenyangPeople’s Republic of China

Personalised recommendations