Facile fabrication of NiOxHy films and their unique electrochromic properties
- 154 Downloads
- 7 Citations
Abstract
The electrochromic (EC) NiOxHy films were fabricated through a facile sol–gel method. The formation of high quality NiOxHy films came from adding the xerogel back into the sol and prolonging the annealing time at gradually increasing temperature up to 250 °C. Scanning electron microscopy and atomic force microscopy characterizations indicated films were compact, homogenous, and smooth. Glance angle X-ray diffraction investigation testified NiOxHy films were of poor crystallization. The Fourier transform infrared, and thermogravimetry and differential thermal analysis showed that films contained the mixture of NiO, Ni(OH)2, NiOOH, water, and organic substance. With the increasing of the xerogel ratio, the optical absorbance and reflectance of films had larger differences between the colored and bleached state, respectively. The film with the xerogel ratio of 1:5 showed excellent EC properties with a transmittance contrast as high as 60.88% at λ = 560 nm, which was higher than other sol–gel nickel oxide films reported.
Keywords
Differential Thermal Analysis Oxygen Evolution Reaction Colored State Electrochromic Property Bleached StateNotes
Acknowledgement
We appreciate the financial supports of the National science Foundation of China (Grant No. 60576013, 60536010 and J0630313).
References
- 1.Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, AmsterdamGoogle Scholar
- 2.Garcia-Miquel JL, Zhang Q, Allen SJ, Rougier A, Blyr A, Davies HO, Jones AC, Leedham TJ, Williams PA, Impey SA (2003) Thin Solid Films 424:165CrossRefGoogle Scholar
- 3.Ozkan Zayima E, Turhan I, Tepehan FZ, Ozer N (2008) Sol Energy Mater Sol Cells 92:164CrossRefGoogle Scholar
- 4.Granqvist CG (2006) Nature 5:89CrossRefGoogle Scholar
- 5.Liu H-R, Zheng W-M, Yan X, Feng B-X (2008) J Alloys Compd 462:356CrossRefGoogle Scholar
- 6.MiIIer EL, Rocheleau RE (1997) J Electrochem Soc 144:1995CrossRefGoogle Scholar
- 7.Bouessay I, Rougier A, Tarascon J-M (2004) J Electrochem Soc 151:H145CrossRefGoogle Scholar
- 8.Wu M-S, Yang C-H (2007) Appl Phys Lett 91:033109CrossRefGoogle Scholar
- 9.Xia XH, Tua JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Electrochim Acta 53:5721CrossRefGoogle Scholar
- 10.Sharma PK, Fantini MCA, Gorenstein A (1998) Solid State Ionics 113–115:457CrossRefGoogle Scholar
- 11.Moser FH, Lyman NR (1990) US Patent No. 4959247, 25 SeptemberGoogle Scholar
- 12.Liu F, Zhou M, Zhong Y-Y, Song Y, Li J-R, Yang W-F, Feng B-X (2008) J Funct Mater 39:1835Google Scholar
- 13.Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Sol Energy Mater Sol Cells 92:628CrossRefGoogle Scholar
- 14.Lin S-H, Chen F-R, Kai J-J (2008) Appl Surf Sci 254:2017CrossRefGoogle Scholar
- 15.Ryu HW, Choi GP, Lee WS, Park JS (2004) J Mater Sci 39:4375. doi: https://doi.org/10.1023/B:JMSC.0000033431.52659.e5 CrossRefGoogle Scholar
- 16.Liu X-M, Zhang X-G, Fu S-Y (2006) Mater Res Bull 41:620CrossRefGoogle Scholar
- 17.Cerc Korošec R, Šauta Ogorevc J, Draškovič P, Dražić G, Bukovec P (2008) Thin Solid Films 516:8264CrossRefGoogle Scholar
- 18.Šurca A, Orel B, Pihlar B, Bukovec P (1996) J Electroanal Chem 40:83CrossRefGoogle Scholar
- 19.Cordoba-Torresi SI, Hugot-Le Goff A, Joiret S (1991) J Electrochem Soc 138:1554CrossRefGoogle Scholar
- 20.Cerc Korošec R, Bukovec P (2004) Thermochim Acta 410:65CrossRefGoogle Scholar
- 21.Cheng J, Cao G-P, Yang Y-S (2006) J Power Sources 159:734CrossRefGoogle Scholar
- 22.Cerc Korošec R, Bukovec P, Pihlar B, Padežnik Gomilšek J (2003) Thermochim Acta 402:57CrossRefGoogle Scholar
- 23.Cerc Korošec R, Bukovec P (2006) Acta Chim Slov 53:136Google Scholar
- 24.Wendlandt WW (1964) Thermal methods of analysis. Interscience Publishers, New York, p 17Google Scholar