Journal of Materials Science

, Volume 44, Issue 22, pp 6011–6019 | Cite as

Preparation and soft lithographic printing of nano-sized ITO-dispersions for the manufacture of electrodes for TFTs

  • Nadja StraueEmail author
  • Martin Rauscher
  • Sabine Walther
  • Hendrik Faber
  • Andreas Roosen


The production of printed electronics exhibits an enormous economical potential due to the possibility to manufacture innovative products at low cost. At the moment, one of the major challenges for the fabrication of printed electronics is the controllability of the material properties during processing and the miniaturization of the deposited structures. In this context, the application of soft lithographic techniques appears promising, because they allow a defined patterning of the materials in the range of few nanometers, which is far below the limits of other printing techniques like inkjet-printing or screen printing. This work proves the applicability of the soft lithographic technique micro-molding in capillaries (MIMIC) for the manufacture of conductive indium tin oxide (ITO) electrodes. For the creation of stable dispersions of ITO nano-sized particles, steric as well as electrostatic stabilization concepts are applied. The prepared dispersions are characterized with regard to the later processing via MIMIC. The geometry and the electrical properties of the soft lithographically deposited structures are determined to prove their functionality. Special attention is paid to the influence of the wetting behavior of the dispersions on the resulting geometry of the structures. Finally, the applicability of the optimized structures is demonstrated by the assembly of a thin film transistor (TFT), in which the deposited structures serve as source and drain electrodes.


Contact Angle PDMS Thin Film Transistor Agglomerate Size Soft Lithographic Technique 



The support of the German Research Foundation (DFG) (Graduiertenkolleg 1161/1) is gratefully acknowledged. Additionally, we thank Evonik Degussa GmbH, Marl, Germany for the generous support.


  1. 1.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99CrossRefGoogle Scholar
  2. 2.
    Loo Y-L, McCulloch I (2008) MRS Bull 33:653CrossRefGoogle Scholar
  3. 3.
    Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T (2008) Proc Natl Acad Sci USA 105:4976CrossRefGoogle Scholar
  4. 4.
    Kim S-M, Seo K-H, Lee J-H, Kim J-J, Lee HY, Lee J-S (2006) J Eur Ceram Soc 26:73CrossRefGoogle Scholar
  5. 5.
    Delamarche E, Juncker D, Schmid H (2005) Adv Mater 17:2911CrossRefGoogle Scholar
  6. 6.
    Jeon NL, Clem P, Jung DY, Lin W, Girolami GS, Payne DA, Nuzzo RG (1997) Adv Mater 9:891CrossRefGoogle Scholar
  7. 7.
    Parashkov R, Becker E, Riedl T, Johannes H-H, Kowalsky W (2005) Adv Mater 17:1523CrossRefGoogle Scholar
  8. 8.
    Cosseddu P, Bonfiglio A (2006) Appl Phys Lett 88:1CrossRefGoogle Scholar
  9. 9.
    Blümel A, Klug A, Eder S, Scherf U, Moderegger E, List EJW (2007) Org Electron 8:389CrossRefGoogle Scholar
  10. 10.
    Zschieschang U, Halik M, Klauk H (2008) Langmuir 24:1665CrossRefGoogle Scholar
  11. 11.
    Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28:153CrossRefGoogle Scholar
  12. 12.
    Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Science 323:1590CrossRefGoogle Scholar
  13. 13.
    Reindl A, Mahajeri J, Peukert W (2009) Thin Solid Films 517:1624CrossRefGoogle Scholar
  14. 14.
    de Hazan Y, Heinecke J, Weber A, Graule T (2009) J Colloid Interf Sci 337:66CrossRefGoogle Scholar
  15. 15.
    de Hazan Y, Reuter T, Werner D, Clasen R, Graule T (2008) J Colloid Interf Sci 323:293CrossRefGoogle Scholar
  16. 16.
    Widegren J, Bergström L (2002) J Am Ceram Soc 85:523CrossRefGoogle Scholar
  17. 17.
    Rogers JA, Nuzzo RG (2005) Mater Today 8:50CrossRefGoogle Scholar
  18. 18.
    Schmitt H, Zeidler M, Rommel M, Bauer AJ, Ryssel H (2008) Microelectron Eng 85:897CrossRefGoogle Scholar
  19. 19.
    Delamarche E, Donzel C, Kamounah FS, Wolf H, Geissler M, Stutz R, Schmidt-Winkel P, Michel B, Mathieu HJ, Schaumburg K (2003) Langmuir 19:8749CrossRefGoogle Scholar
  20. 20.
    Gross M, Winnacker A, Wellmann PJ (2007) Thin Solid Films 515:8567CrossRefGoogle Scholar
  21. 21.
    Lutz C, Roosen A (1998) Wetting behaviour of tape casting slurries on tape carriers. In: Messing GL, Lange FF, Hirano S (eds) Ceramic transactions, vol 83. The American Ceramic Society, Columbus, OH, pp 163–170Google Scholar
  22. 22.
    Martin CR, Aksay IA (2003) J Phys Chem B 107:4261CrossRefGoogle Scholar
  23. 23.
    Delamarche E, Schmid H, Biebuyck H, Michel B (1997) Adv Mater 9:741CrossRefGoogle Scholar
  24. 24.
    Hsia KJ, Huang Y, Menard E, Park J-U, Zhou W, Rogers J, Fulton JM (2005) Appl Phys Lett 86:1CrossRefGoogle Scholar
  25. 25.
    Huang YY, Zhou W, Hsia KJ, Menard E, Park J-U, Rogers JA, Alleyne AG (2005) Langmuir 21:8058CrossRefGoogle Scholar
  26. 26.
    Granqvist CG, Hultåker A (2002) Thin Solid Films 411:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nadja Straue
    • 1
    Email author
  • Martin Rauscher
    • 1
  • Sabine Walther
    • 2
  • Hendrik Faber
    • 3
  • Andreas Roosen
    • 1
  1. 1.Department of Materials Science, Glass and CeramicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Electrical, Electronic and Communication Engineering, Electron DevicesUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Materials Science, Polymer MaterialsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations