Journal of Materials Science

, Volume 44, Issue 20, pp 5682–5687 | Cite as

Study on the structure of SF fiber mats electrospun with HFIP and FA and cells behavior

  • Feng Zhang
  • Bao Q. ZuoEmail author
  • Lun Bai


Bombyx mori silk fibroin (SF) fiber mats were prepared by electrospinning with the solvent of hexafluoroisopropanol (HFIP) and formic acid (FA). The average diameters of SF fiber mats observed by SEM were 2.0 and 0.3 μm when different solvent, HFIP and FA, were used. Fourier transform infrared and X-ray diffraction were employed to study the secondary structure of the SF fiber mats; the results showed that the electrospin solvent not only affect the secondary structure of as-spun SF fiber mats, but also indirectly affect the structure transition of SF fiber mats post-treatment with ethanol. And the SF fiber mats electrospun with FA showed more β-sheet structure before and after ethanol treatment. The differential thermal analysis curve indicated that the solvent of HFIP or FA had a weak effect on the thermal properties of SF fiber mats. To assay the cytocompatibility and cell behavior on the SF fiber mats, cell attachment, spreading, and proliferation of normal human epidermal fibroblasts (NHEF) seeded on the scaffolds was studied. The results indicated that the SF fiber mats support NHEF attachment and growth on SF fiber mats in vitro, and no difference between the SF fiber mats electrospun with HFIP and FA was observed. In this article, a desired morphology and secondary structure of SF fiber mats could be prepared by choosing different electrospinning solvent.


Formic Acid Silk Fibroin Ethanol Treatment HFIP Random Coil Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present works is supported financially by the Natural Science Foundation of Jiangsu Su (No. BK2007054) and sponsored by National Base Research Program of China (973 program) (2005CB623902).


  1. 1.
    Kaplan DL, Adams WW, Farmer B, Viney C (1994) American Chemical Society Symposium Series, vol 544, p 2Google Scholar
  2. 2.
    Vollrath F, Knight DP (2001) Nature 410:541PubMedCrossRefADSGoogle Scholar
  3. 3.
    Moy RL, Lee A, Zalka A (1991) Am Fam Physician 44:2123PubMedGoogle Scholar
  4. 4.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL (2003) Biomaterials 24:401PubMedCrossRefGoogle Scholar
  5. 5.
    Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Int J Biol Macromol 38:165PubMedCrossRefGoogle Scholar
  6. 6.
    Santin M, Motta A, Freddi G, Cannas M (1999) J Biomed Mater Res 46:382PubMedCrossRefGoogle Scholar
  7. 7.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) Biomaterials 26:147PubMedCrossRefGoogle Scholar
  8. 8.
    DalPra I, Freddi G, Minic J, Chiarini A, Armato U (2005) Biomaterials 26:1987CrossRefGoogle Scholar
  9. 9.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Biomaterials 25:1289PubMedCrossRefGoogle Scholar
  10. 10.
    Ishida M, Asakura T, Yokoi M, Saito H (1990) Macromolecules 23:88CrossRefADSGoogle Scholar
  11. 11.
    Zuo BQ, Wu ZY, Yan C, Sha XY (2004) J Mater Sci Eng 6:842Google Scholar
  12. 12.
    Zuo BQ, Wu ZY (2006) Chin J Clin Rehabil 10:168Google Scholar
  13. 13.
    Min BM, Jeong L, Lee KY, Park WH (2006) Macromol Biosci 6:285PubMedCrossRefGoogle Scholar
  14. 14.
    Min BM, Jeong L, Nam YS, Kim JM, Kim JY, Park WH (2004) Int J Biol Macromol 34:281PubMedCrossRefGoogle Scholar
  15. 15.
    Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004) Biomaterials 25:1039PubMedCrossRefGoogle Scholar
  16. 16.
    Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F (2005) Polymer 46:1625CrossRefGoogle Scholar
  17. 17.
    Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2003) Polymer 44:5721CrossRefGoogle Scholar
  18. 18.
    Park WH, Jeong L, Yoo DL, Hudson S (2004) Polymer 45:7151CrossRefGoogle Scholar
  19. 19.
    Zarkoob S, Eby RK, Remeler DH, Hudson SD, Ertley D, Adams WW (2004) Polymer 45:3973CrossRefGoogle Scholar
  20. 20.
    Zhou W, Chen X, Shao ZZ (2006) Prog Chem 11:1514Google Scholar
  21. 21.
    Byler DM, Susi H (1986) Biopolymers 25:469PubMedCrossRefGoogle Scholar
  22. 22.
    Jackson M, Mantsch HH (1995) Crit Rev Biochem Mol Biol 30:95PubMedCrossRefGoogle Scholar
  23. 23.
    Um IC, Kweon HY, Hudson S (2001) Int J Biol Macromol 29:91PubMedCrossRefGoogle Scholar
  24. 24.
    Ha SW, Tonelli AE, Hudson SM (2005) Biomacromolecules 6:1722PubMedCrossRefGoogle Scholar
  25. 25.
    Ki CS, Lee KH, Baek DH, Hattori M, Um IC, Ihm DW, Park YH (2007) J Appl Polym Sci 105:1605CrossRefGoogle Scholar
  26. 26.
    Weidinger A, Hermans PH (1961) Makromol Chem 50:98CrossRefGoogle Scholar
  27. 27.
    Tsukada M, Freddi G, Kasai N (1994) J Polym Sci 32:1175Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Material Engineering Institute of Soochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations