Advertisement

Journal of Materials Science

, Volume 44, Issue 21, pp 5713–5724 | Cite as

A review on biodegradable polymeric materials for bone tissue engineering applications

  • Muhammad Iqbal Sabir
  • Xiaoxue Xu
  • Li LiEmail author
Article

Abstract

Biodegradable polymer scaffolds have played a significant role in wide range of tissue engineering application such as bone scaffolds since the last decade. The aim of this article is to provide the comprehensive overview of biocompatible and biodegradable polymer materials and composite materials with their advantages and drawbacks in the application of biomaterial scaffolds, furthermore the properties and degradation criteria of the biomaterials are discussed in this review.

Keywords

Chitosan Tissue Engineering PHBV Glycolic Acid Bone Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lin C-Y, Schek RM, Mistry AS, Shi X, Mikos AG, Krebsbach PH, Hollister SJ (2005) Tissue Eng 11(9–10):1589PubMedCrossRefGoogle Scholar
  2. 2.
    Isenberg BC, Williams C, Tranquillo RT (2006) Circ Res 98:25PubMedCrossRefGoogle Scholar
  3. 3.
    Kim BS, Putnam AJ, Kulik TJ, Mooney DJ (1998) Biotechnol Bioeng 57(1):46PubMedCrossRefGoogle Scholar
  4. 4.
    Kalfas LH (2001) Neurosurg Focus 10(4)Google Scholar
  5. 5.
    Dimar JR, Glassman SD (2007) Curr Opin Orthopaed 18(3):226CrossRefGoogle Scholar
  6. 6.
    Gravel M, Gross T, Vago R, Tabrizian M (2006) Biomaterials 27:1899PubMedCrossRefGoogle Scholar
  7. 7.
    Cheung H-Y, Lau K-T, Lu T-P, Hui D (2007) Compos Part B 38:291CrossRefGoogle Scholar
  8. 8.
    Chapekar MS (2000) J Biomed Mater Res 53:617PubMedCrossRefGoogle Scholar
  9. 9.
    Sambrook P (ed) (2001) The musculoskeletal system, Chap 5. Elsevier Health Sciences Publishers, pp 67–84. ISBN: 0443070156, 9780443070150Google Scholar
  10. 10.
    Callaghan JJ (1997) J Bone Joint Surg (Am) 79:1416Google Scholar
  11. 11.
    Brekke JH, Toth JM (1999) J Biomed Mater Res 43(4):380CrossRefGoogle Scholar
  12. 12.
    Whang K, Thomas CH, Healy KE (1995) Polymer 36:837CrossRefGoogle Scholar
  13. 13.
    Oh S, Kang SG, Kim ES, Cho SH, Lee JH (2003) Biomaterials 24:4011PubMedCrossRefGoogle Scholar
  14. 14.
    Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) J Biomed Mater Res 27:183PubMedCrossRefGoogle Scholar
  15. 15.
    Mathieu LM, Mueller TL, Bourban P-E, Pioletti DP, Muller R, Manson J-AE (2006) Biomaterials 27:905PubMedCrossRefGoogle Scholar
  16. 16.
    Shin KC, Kim BS, Kim JH, Park TG, Nam JD, Lee DS (2005) Polymer 46:3801CrossRefGoogle Scholar
  17. 17.
    Kim HD, Bae EH, Kwon IC, Pal RR, Nam JD, Lee DS (2004) Biomaterials 25:2319PubMedCrossRefGoogle Scholar
  18. 18.
    Yoon JJ, Kim JH, Park TG (2003) Biomaterials 24:2323PubMedCrossRefGoogle Scholar
  19. 19.
    Reignier J, Huneault MA (2006) Polymer 47:4703CrossRefGoogle Scholar
  20. 20.
    Seunarine K, Gadegaard N, Tormen M, Meredith DO, Riehle MO, Wilkinson CDW (2006) Nanomedicine 1(3):281PubMedCrossRefGoogle Scholar
  21. 21.
    Ma PX (2003) In: Kroschwitz J (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, NJGoogle Scholar
  22. 22.
    Borden M, Attawia M, Khan Y, Laurencin CT (2002) Biomaterials 23(2):551PubMedCrossRefGoogle Scholar
  23. 23.
    Chen G, Ushida T, Tateishi T (2002) Macromol Biosci 2:67CrossRefGoogle Scholar
  24. 24.
    Einhorn TA (2004) J Bone Joint Surg (Am) 86:1350Google Scholar
  25. 25.
    Hollinger JO, Schmitz JP (1997) Ann NY Acad Sci 831:427PubMedCrossRefGoogle Scholar
  26. 26.
    Burg KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347PubMedCrossRefGoogle Scholar
  27. 27.
    Mauli Agrawal C, Athanasiou KA (1997) Biomed Mater Res Appl Biomater 38:105CrossRefGoogle Scholar
  28. 28.
    Bergsma JE, de Bruijn WC, Rozema FR, Bos RRM, Boering G (1995) Biomoterids 16:25CrossRefGoogle Scholar
  29. 29.
    Seal BL, Otero TC, Panitch A (2001) Mater Sci Eng 34(4–5):147Google Scholar
  30. 30.
    Duda A, Penczek S (2002) In: Steinbüchel A, Doi Y (eds) Biopolymers, vol 3b: Polyesters II – Properties and Chemical Synthesis, Chap 12. Wiley-VCH, Weinheim, pp 371–430Google Scholar
  31. 31.
    Nair LS, Laurencin CT (2006) Adv Biochem Eng Biotechnol 102:47PubMedGoogle Scholar
  32. 32.
    Shalaby SW, Johnson RA (1994) In: Shalaby SW (ed) Biomedical polymers: designed to degrade systems. Hanser, New YorkGoogle Scholar
  33. 33.
    Rhim J-W, Mohanty AK, Singh SP, Perry KW (2005) J Appl Polym Sci 101:3736CrossRefGoogle Scholar
  34. 34.
    Mauli Agrawal C, Ray RB (2001) J Biomed Mater Res 55:141CrossRefGoogle Scholar
  35. 35.
    Middleton JC, Tipton AJ (2000) Biomaterials 21:2335PubMedCrossRefGoogle Scholar
  36. 36.
    Athanasiou KA, Niederauer GG, Mauli Agrawal C (1996) Biomoterids 17:93CrossRefGoogle Scholar
  37. 37.
    Miller RA, Brady JM, Cutright DE (1977) J Biomed Mater Res 11:711PubMedCrossRefGoogle Scholar
  38. 38.
    Vert M, Li S, Garreau H, Mauduit J, Boustta M, Schwach G, Engel R, Coudane J (1997) Macromol Mater Eng 247:239Google Scholar
  39. 39.
    Peter SJ, Nolley J, Widmer M, Merwin JE, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG (1997) Tissue Eng 41(1):207CrossRefGoogle Scholar
  40. 40.
    Hedberg EL, Shih CK, Lemoine JL et al (2005) Biomaterials 26:3215PubMedCrossRefGoogle Scholar
  41. 41.
    Domb AJ, Kost J, Wiseman DM (eds) (1998) Handbook of biodegradable polymers, Chap 5. CRC Press Publishers, pp 87–96. ISBN: 9057021536, 9789057021534Google Scholar
  42. 42.
    Kai Z, Ying D, Guo-Qiang C (2003) Biochem Eng J 16:115CrossRefGoogle Scholar
  43. 43.
    Chen G-Q, Wu Q (2005) Biomaterials 26:6565PubMedCrossRefGoogle Scholar
  44. 44.
    Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Biomaterials 8:289PubMedCrossRefGoogle Scholar
  45. 45.
    Young Y, Min B-M, Lee SJ, Lee TS, Park WH (2004) J Appl Polym Sci 95:193Google Scholar
  46. 46.
    Young Y, Lee SW et al (2005) Polym Degrad Stab 90:441CrossRefGoogle Scholar
  47. 47.
    Sarazin P, Roy X, Favis BD (2004) Biomaterials 25:5965PubMedCrossRefGoogle Scholar
  48. 48.
    Kuo Y-C, Leou S-N (2006) Biotechnol Prog 22:1664PubMedGoogle Scholar
  49. 49.
    Zhao K, Deng Y, Chen JC, Chen G-Q (2003) Biomaterials 24(6):1041PubMedCrossRefGoogle Scholar
  50. 50.
    Yao D, Smith A, Nagarajan P et al (2005) J Biomed Mater 77b:287Google Scholar
  51. 51.
    Kweona HY, Yoo MK, Park K, Kim TH, Chul H, Lee HC (2003) Biomaterials 24:801CrossRefGoogle Scholar
  52. 52.
    Temenoff JS, Mikos AG (2000) Biomaterials 21:2405PubMedCrossRefGoogle Scholar
  53. 53.
    Go¨pferich A, Tessmar J (2002) Adv Drug Deliv Rev 54:911CrossRefGoogle Scholar
  54. 54.
    Ibim SEM, Uhrich KE, Attawia M et al (1998) J Biomed Mater 43:374CrossRefGoogle Scholar
  55. 55.
    Kumara N, Langer RS, Domb AJ (2002) Adv Drug Deliv Rev 54:889CrossRefGoogle Scholar
  56. 56.
    Lakshmi S, Kattia DS, Laurencin CT (2003) Adv Drug Deliv Rev 55:467PubMedCrossRefGoogle Scholar
  57. 57.
    Allcock HR (2006) Curr Opin Solid State Mater Sci 10:231CrossRefMathSciNetGoogle Scholar
  58. 58.
    Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI (2006) J Biomed Mater Res A 79(4):963PubMedGoogle Scholar
  59. 59.
    Pouton CW, Akhtar S (1996) Adv Drug Deliv Rev 18:133CrossRefGoogle Scholar
  60. 60.
    Muggli DS, Burkoth AK, Anseth KS (1999) Biomed Mater 46:271CrossRefGoogle Scholar
  61. 61.
    Heller J, Barr J, Ng SY (2002) Adv Drug Deliv Rev 54:1015PubMedCrossRefGoogle Scholar
  62. 62.
    Parsons JR (1998) In: Black J, Hastings G (eds) Handbook of biomaterials properties. Chapman & Hall, New YorkGoogle Scholar
  63. 63.
    Ibim SM, Ambrosio AA, Larrier D, Allcock HR, Laurencin CT (1996) J Control Release 40:31CrossRefGoogle Scholar
  64. 64.
    Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, Ambrosio AA (1993) J Biomed Mater 27:963CrossRefGoogle Scholar
  65. 65.
    Conconi MT, Lora S, Menti AM, Carampin P, Parnigotto PP (2006) Tissue Eng 12:4CrossRefGoogle Scholar
  66. 66.
    Kang H-W, Tabata Y, Ikada Y (1999) Biomaterials 20:1339PubMedCrossRefGoogle Scholar
  67. 67.
    Vin F, Teot L, Measume S (2002) J Wound Care 11(9):335PubMedGoogle Scholar
  68. 68.
    Duan X, McLaughlin C, Griffith M, Sheardown H (2007) Biomaterials 28:78PubMedCrossRefGoogle Scholar
  69. 69.
    Ruszczak Z (2003) Adv Drug Deliv Rev 55:1595PubMedCrossRefGoogle Scholar
  70. 70.
    Green D, Walsh D, Mann S, Oreffo ROC (2002) Bone 30:PG810CrossRefGoogle Scholar
  71. 71.
    Barbosa MA, Granja PL, Barrias CC, Amaral IF (2005) ITBM-RBM 26:212CrossRefGoogle Scholar
  72. 72.
    Francis Suh J-K, Matthew HWT (2000) Biomaterials 21:2589CrossRefGoogle Scholar
  73. 73.
    Shi C, Zhu Y, Ran X et al (2006) J Surg Res 133:185PubMedCrossRefGoogle Scholar
  74. 74.
    Maqueta V, Boccaccini AR et al (2004) Biomaterials 25:4185CrossRefGoogle Scholar
  75. 75.
    Wei G, Ma PX (2004) Biomaterials 25:4749PubMedCrossRefGoogle Scholar
  76. 76.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Compos Sci Technol 61:1189CrossRefGoogle Scholar
  77. 77.
    Cai Q, Yang J, Bei J, Wang S (2002) Biomaterials 23:4483PubMedCrossRefGoogle Scholar
  78. 78.
    Ciardelli G, Chiono V, Vozzi G, Pracella M et al (2005) Biomacromolecules 6:1961PubMedCrossRefGoogle Scholar
  79. 79.
    Broz ME, VanderHart DL, Washburn NR (2003) Biomaterials 24:4181PubMedCrossRefGoogle Scholar
  80. 80.
    Kim JY, Cho D-W (2009) Microelectron Eng 86:1447CrossRefGoogle Scholar
  81. 81.
    Nukavarapu SP, Kumbar SG, Brown JL et al (2008) Biomacromolecules 9(7):1818PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations