Journal of Materials Science

, Volume 44, Issue 18, pp 4883–4891 | Cite as

Investigation of the quasi-ternary system LaMnO3–LaCoO3–“LaCuO3”. II: The series LaMn0.25−x Co0.75−x Cu2x O3−δ and LaMn0.75−x Co0.25−x Cu2x O3−δ

Article

Abstract

This paper investigates the crystal structure, thermal expansion, and electrical conductivity of two series of perovskites (LaMn0.25−x Co0.75−x Cu2x O3−δ and LaMn0.75−x Co0.25−x Cu2x O3−δ with x = 0, 0.025, 0.05, 0.1, 0.15, 0.2, and 0.25) in the quasi-ternary system LaMnO3–LaCoO3–“LaCuO3”. The Mn/Co ratio was found to have a stronger influence on these properties than the Cu content. In comparison to the Co-rich series (LaMn0.25−x Co0.75−x Cu2x O3−δ), the Mn-rich series (LaMn0.75−x Co0.25−x Cu2x O3−δ) showed a much higher Cu solubility. All compositions in this series were single-phase materials after calcination at 1100 °C. The Co-rich series showed higher thermal expansion coefficients (αmax = 19.6 × 10−6 K−1) and electrical conductivity (σmax = 730 S/cm at 800 °C) than the Mn-rich series (αmax = 10.6 × 10−6 K−1, σmax = 94 S/cm at 800 °C). Irregularities in the thermal expansion curves indicated phase transitions at 150–350 °C for the Mn-rich series, while partial melting occurred at 980–1000 °C for the Co-rich series with x > 0.15.

Notes

Acknowledgements

The authors thank P. Lersch (deceased) and M. Ziegner for XRD measurements, A. Hilgers and M.-T. Gerhards for dilatometric measurements, and H. Lippert and N. Merki (FZJ-ZCH) for chemical analyses.

References

  1. 1.
    Kharton VV, Yaremchenko AA, Naumovich EN (1999) J Solid State Electrochem 3:303 (and references therein)CrossRefGoogle Scholar
  2. 2.
    Narasimhan V, Keer HV, Chakrabarty DK (1985) Phys Status Solidi A 89:65CrossRefGoogle Scholar
  3. 3.
    De Souza RA, Kilner JA (1998) Solid State Ion 106:175CrossRefGoogle Scholar
  4. 4.
    Seiyama T (1992) Catal Rev Sci Eng 34:281CrossRefGoogle Scholar
  5. 5.
    Banerjee S, Choudhary VR (2000) Proc Indian Acad Sci (Chem Sci) 112:535CrossRefGoogle Scholar
  6. 6.
    von Helmholt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Phys Rev Lett 71:2331CrossRefADSGoogle Scholar
  7. 7.
    Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Phys Rev B 51:14103CrossRefADSGoogle Scholar
  8. 8.
    Radwański RJ, Ropka Z (2000) Physica B 281&282:507CrossRefGoogle Scholar
  9. 9.
    Tietz F (1999) In: Vincenzini P (ed) Proc. 9th CIMTEC-World ceramic congress and forum on new materials, vol 24. Techna Publishers S.r.l., Faenza, Italy, pp 61–70Google Scholar
  10. 10.
    Petric A, Huang P, Tietz F (2000) Solid State Ion 135:719CrossRefGoogle Scholar
  11. 11.
    Tikhonova IL, Zuev AYu, Petrov AN (1998) Russ J Phys Chem 72:1625Google Scholar
  12. 12.
    Tikhonova IL, Bakhtin AV, Zuev AYu, Petrov AN (1999) Russ J Phys Chem 73:365Google Scholar
  13. 13.
    Porta P, De Rossi S, Faticanti M, Minelli G, Pettiti I, Lisi L, Turco M (1999) J Solid State Chem 146:291CrossRefADSGoogle Scholar
  14. 14.
    Tietz F, Schmidt A, Zahid M (2004) J Solid State Chem 177:745CrossRefADSGoogle Scholar
  15. 15.
    Demazeau G, Parent C, Pouchard M, Hagenmuller P (1973) Mater Res Bull 7:913CrossRefGoogle Scholar
  16. 16.
    Bringley JF, Scott BA, La Placa SJ, McGuire TR, Mehran F (1993) Phys Rev B 47:15269CrossRefADSGoogle Scholar
  17. 17.
    Pechini MP (1967) US Patent 3,330,697Google Scholar
  18. 18.
    Tietz F, Arul Raj I, Jungen W, Stöver D (2001) Acta Mater 49:803CrossRefGoogle Scholar
  19. 19.
    Shannon RD (1976) Acta Crystallogr A32:751ADSGoogle Scholar
  20. 20.
    Zahid M, Arul Raj I, Fischer W, Tietz F, Serra Alfaro JM (2006) Solid State Ion 177:3205CrossRefGoogle Scholar
  21. 21.
    Skakle JMS, West AR (1994) J Am Ceram Soc 77:2199CrossRefGoogle Scholar
  22. 22.
    Tai L-W, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ion 76:259, 273Google Scholar
  23. 23.
    Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T (2000) Solid State Ion 132:167CrossRefGoogle Scholar
  24. 24.
    Thornton G, Tofield BC, Williams DE (1982) Solid State Commun 44:1213CrossRefADSGoogle Scholar
  25. 25.
    Mizusaki J, Tabuchi J, Matsuura T, Yamauchi S, Fueki K (1989) J Electrochem Soc 136:2082CrossRefGoogle Scholar
  26. 26.
    Sarma DD, Chainani A (1994) J Solid State Chem 111:208CrossRefADSGoogle Scholar
  27. 27.
    Tagawa H, Mizusaki J, Arai Y, Kuwayama Y, Tsutiya S, Takeda T, Sesido S (1990) Denki Kagaku oyobi Kogyo Butsuri Kagaku 58:512Google Scholar
  28. 28.
    Rajeev KP, Shivashankar GV, Raychaudhuri AK (1991) Solid State Commun 79:591CrossRefADSGoogle Scholar
  29. 29.
    Sreedhar K, Honig JM, Darwin M, McElfresh M, Shand PM, Xu J, Crooker BC, Spalek J (1992) Phys Rev B 46:6382CrossRefADSGoogle Scholar
  30. 30.
    Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ion 124:281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Energieforschung (IEF-1)JülichGermany
  2. 2.European Institute for Energy Research (EIfER)KarlsruheGermany

Personalised recommendations