Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4743–4749 | Cite as

Synthesis, elaboration and characterization of the new material CuIn3S5 thin films

  • N. KhémiriEmail author
  • M. Kanzari
Article

Abstract

CuIn3S5 compound was prepared by direct reaction of high-purity elemental copper, indium and sulphur. CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The powder was characterized for their structural and compositional properties by using X-ray diffraction (XRD) and energy dispersive X-ray (EDAX). The XRD studies revealed that the powder exhibiting P-chalcopyrite structure. From the XRD data, we calculated the lattice parameters a and c. Then, the cation–anion bond lengths lAC and lBC are deduced. The films were characterized for their structural, compositional, morphological and optical properties by using XRD, EDAX, atomic force microscopy and optical measurement techniques (transmittance and reflectance). XRD analysis revealed that the films deposited at a room temperature (30 °C) are amorphous in nature, whereas those deposited on heated substrates (≥75 °C) were polycrystalline with a preferred orientation along (112) of the chalcopyrite phase. The surface morphological analysis revealed that the films grown at different substrate temperature had an average roughness between 1.1 and 4.8 nm. From the analysis of the transmission and reflection data, the values of direct and indirect band gap of the films were determined. We found that the optical band gap decreases when the substrate temperature increases.

Keywords

Substrate Temperature Chalcopyrite Heated Substrate In2Se3 Chalcopyrite Structure 

References

  1. 1.
    Krunks M, Bijakina O, Varema T, Mikli V, Mellikov E (1999) Thin Solid Films 338:125CrossRefGoogle Scholar
  2. 2.
    Djellal L, Bouguelia A, Trari M (2008) J Semicond Sci Technol 23:450CrossRefGoogle Scholar
  3. 3.
    Wasim SM, Rincon C, Marin G (2002) Phys Status Solidi A 194:244CrossRefGoogle Scholar
  4. 4.
    Ariswan, El Haj Moussa G, Abdelali M, Guastavino F, Llinares C (2002) Solid State Commun 124:391CrossRefGoogle Scholar
  5. 5.
    Zribi M, Kanzari M, Rezig B (2006) Mater Lett 60:98CrossRefGoogle Scholar
  6. 6.
    Guillen C (2006) J Semicond Sci Technol 21:709CrossRefGoogle Scholar
  7. 7.
    Malar P, Savitha Pillai S, Kasiviswanathan S (2007) Mater Chem Phys 101:118CrossRefGoogle Scholar
  8. 8.
    Zhang SB, Wei SH, Zunger A (1997) Phys Rev Lett 78:40Google Scholar
  9. 9.
    Scheer R, Lewerenz HJ (1994) J Vac Sci Technol A 12:51CrossRefGoogle Scholar
  10. 10.
    Kato T, Omata T, Nakamura T, Anno D, Nabetani Y, Matsumoto T (2005) J Cryst Growth 275:531CrossRefGoogle Scholar
  11. 11.
    Cattarin S, Guerriero P, Dietz N, Lewerenz HJ (1994) Electrochim Acta 40:1041CrossRefGoogle Scholar
  12. 12.
    Berenguier B, Lewerenz HJ (2006) Electrochem Commun 8:165CrossRefGoogle Scholar
  13. 13.
    Scheer R, Lewerenz HJ (1995) J Vac Sci Technol A 13:1924CrossRefGoogle Scholar
  14. 14.
    Heavens OS (1950) Optical properties of thin solid films. Butterworths, LondonGoogle Scholar
  15. 15.
    Mobaraka M, Shaban HT, Elhady AF (2008) Mater Chem Phys 109:287CrossRefGoogle Scholar
  16. 16.
    Korashy AE, Abdel-Rahim MA, El-Zahed H (1999) Thin Solid Films 338:207CrossRefGoogle Scholar
  17. 17.
    Dıaz R, Bisson L, Agullo-Rueda F, Abd Lefdil M, Rueda F (2005) Appl Phys A 81:433CrossRefGoogle Scholar
  18. 18.
    Chang-Dae K, Moon-Seog J, Wha-Tek K (1998) J Korean Phys Soc 30:750Google Scholar
  19. 19.
    Abernathy CR, Bates CW, Anani AA, Haba B, Smestad G (1984) Appl Phys Lett 45:890CrossRefGoogle Scholar
  20. 20.
    Bodnar IV, Victorov IA, Kushner TL, Rud VY, Rud YV (2005) Thin Solid Films 487:199CrossRefGoogle Scholar
  21. 21.
    Bodnar IV (2008) Inorg Mater 44:104CrossRefGoogle Scholar
  22. 22.
    Mamazza R Jr, Morel DL, Ferekides CS (2005) Thin Solid Films 484:26CrossRefGoogle Scholar
  23. 23.
    Warren BE (1990) X-ray diffraction. Dover, New York, p 253Google Scholar
  24. 24.
    Revathi N, Prathap P, Ramakrishna Reddy KT (2008) Appl Surf Sci 254:5291CrossRefGoogle Scholar
  25. 25.
    Djessas K, Masse G, Ibannaim M (2000) J Electrochem Soc 147:1235CrossRefGoogle Scholar
  26. 26.
    Ye JD, Gu SL, Zhu SM, Qin F, Hu LQ, Ren L, Zhang R, Shi Y, Zheng YD (2004) Appl Phys A 78:761CrossRefGoogle Scholar
  27. 27.
    Milovzorov DE, Ali AM, Inokuma T, Kurata Y, Suzuki T, Hasegawa S (2001) Thin Solid Films 382:47CrossRefGoogle Scholar
  28. 28.
    Konovalov I (2004) Thin Solid Films 451–452:413CrossRefGoogle Scholar
  29. 29.
    Davis EA, Mott NF (1970) Philos Mag 22:903CrossRefGoogle Scholar
  30. 30.
    Reena Philip R, Pradeep B (2005) Thin Solid Films 472:136CrossRefGoogle Scholar
  31. 31.
    Tembhurkar YD, Hirde JP (1992) Thin Solid Films 215:65CrossRefGoogle Scholar
  32. 32.
    Guillén C (2006) Semicond Sci Technol 21:709CrossRefGoogle Scholar
  33. 33.
    Kanzari M, Rezig B (2000) Semicond Sci Technol 15:335CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire de Photovoltaïque et Matériaux Semi-conducteursENITTunisTunisia

Personalised recommendations