Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4721–4727 | Cite as

Carbon fibers modified with carbon nanotubes

  • Aneta Fraczek-Szczypta
  • Maciej Bogun
  • Stanislaw Blazewicz
Article

Abstract

Carbon nanotubes were used to modify a polyacrylonitrile (PAN) polymer solution before the manufacture of the carbon fiber precursor. The modified PAN fibers were spun from a dimethylformamide solution containing a small amount of single-walled carbon nanotubes. The fibers were characterized by thermogravimetry and optical and scanning electron microscopy. Structure, morphology, and selected properties of the composite polymeric fibers and the fibers after carbonization are characterized. The mechanical properties of the fibers are examined. It is found that nanotubes in the PAN solution have a strong tendency to form agglomerates that inhibit suitable macromolecular chain orientation of the carbon fiber precursor. Fibers manufactured from such a solution have similar mechanical properties to those from a pure PAN precursor, and after carbonization the resultant carbon fibers are very weak. A comparison of pure carbon fibers and those containing nanotubes reveals slight differences in their structural ordering.

Keywords

Carbon Fiber Composite Fiber Carbonization Temperature Fiber Precursor Composite Carbon Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the Polish Ministry of Science and Higher Education, project no 3763/T02/2006/31. Electrical characterization of carbon fibers was realized at the Institute of Molecular Physics, Polish Academy of Science, Poznan.

References

  1. 1.
    Chae HG, Sreekumer TV, Uchida T, Kumar S (2005) Polymer 46:10925CrossRefGoogle Scholar
  2. 2.
    Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH et al (2004) Adv Mater 2004:16Google Scholar
  3. 3.
    Ra EJ, An KH, Kim KK, Jeong SY, Lee YH (2005) Chem Phys Lett 413:188CrossRefADSGoogle Scholar
  4. 4.
    Kim YJ, Lee HJ, Lee SW, Cho BW, Park CR (2005) Carbon 43:163CrossRefGoogle Scholar
  5. 5.
    Ranghino G, Giannotta G, Marra G, Po R (2003) Rev Adv Mater Sci 5:413Google Scholar
  6. 6.
    Gojny FJ, Schulte K (2004) Compos Sci Technol 64:2303CrossRefGoogle Scholar
  7. 7.
    Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265:1212PubMedCrossRefADSGoogle Scholar
  8. 8.
    Thostenson ET, Ren Z, Chow TW (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  9. 9.
    Hsiao KT, Alms J, Advani SG (2003) Nanotechnology 14:791CrossRefADSGoogle Scholar
  10. 10.
    Lau KT (2002) Carbon 40:1605CrossRefGoogle Scholar
  11. 11.
    Andrews R, Jacques D, Minot M, Rantell T (2002) Macromol Mater Eng 287:395CrossRefGoogle Scholar
  12. 12.
    Bai JB (2003) Carbon 41:1309CrossRefGoogle Scholar
  13. 13.
    Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Chem Phys Lett 370:820CrossRefADSGoogle Scholar
  14. 14.
    Owens FJ (2005) Mater Lett 59:3720CrossRefGoogle Scholar
  15. 15.
    Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Polymer 47:1704CrossRefGoogle Scholar
  16. 16.
    Lau KT, Hui D (2002) Carbon 40:1597CrossRefGoogle Scholar
  17. 17.
    Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng R 49:89CrossRefGoogle Scholar
  18. 18.
    Chen S, Shen W, Wu G, Chen D, Jiang M (2005) Chem Phys Lett 402:312CrossRefADSGoogle Scholar
  19. 19.
    Rosca ID, Watari F, Uo M, Akasaka T (2005) Carbon 43:3124CrossRefGoogle Scholar
  20. 20.
    Tucknott R, Yaliraki SN (2002) Chem Phys Lett 281:455Google Scholar
  21. 21.
    Cooper CA, Cohen SR, Wagner HD (2002) Appl Phys Lett 81:3873CrossRefADSGoogle Scholar
  22. 22.
    Dresselhaus MS, Dresselhaus G, Avouris Ph (2001) Carbon nanotubes synthesis, structure, properties and applications. Springer, Berlin, HeidelbergGoogle Scholar
  23. 23.
    Pipes RB, Hubert P (2003) Compos Sci Technol 63:1571CrossRefGoogle Scholar
  24. 24.
    Trinquecoste M, Charlier JL, Derre A, Delhaes P, Chadeyron P (1996) Carbon 34:923CrossRefGoogle Scholar
  25. 25.
    Mikolajczyk T, Bogun M, Blazewicz M, Piekarczyk I (2006) J Appl Polym Sci 100:2881CrossRefGoogle Scholar
  26. 26.
    Bayot V, Piraux L, Michenaud JP, Issi JP (1989) Phys Rev B40:3514ADSGoogle Scholar
  27. 27.
    Bayot V, Piraux L, Michenaud JP, Issi JP, Lelaurain M, Moore A (1990) Phys Rev B41l:1177Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aneta Fraczek-Szczypta
    • 1
  • Maciej Bogun
    • 2
  • Stanislaw Blazewicz
    • 1
  1. 1.Department of Biomaterials, Faculty of Material Science and CeramicsAGH University of Science and TechnologyKrakowPoland
  2. 2.Department of Man-Made Fibers, Faculty of Textile Engineering and MarketingTechnical University of LodzLodzPoland

Personalised recommendations