Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4700–4704 | Cite as

Reversible hydrogen storage behaviors and microstructure of TiC-doped sodium aluminum hydride

  • Xiulin Fan
  • Xuezhang Xiao
  • Jiechang Hou
  • Zheng Zhang
  • Yuanbo Liu
  • Zhe Wu
  • Changpin Chen
  • Qidong Wang
  • Lixin ChenEmail author
Article

Abstract

TiC-doped NaAlH4 complex hydride was prepared by hydrogenating of ball-milled NaH/Al mixture in the presence of 5 mol% TiC powder, and its hydrogen storage behaviors and microstructure were investigated. It is found that TiC is a good catalyst for the reversible hydriding/dehydriding process of NaAlH4 at moderate temperatures by reducing the decomposition temperature and improving the hydriding/dehydriding kinetics. The hydrogen desorption capacity of 5 mol% TiC-doped NaAlH4 is 4.6 wt% at 165 °C and its average dehydriding rate in the first 30 min reaches 0.107 wt%/min. X-ray diffraction analyses show that the size of crystal grains of the composites is reduced by ball-milling, and is then increased rapidly in the first hydriding–dehydriding cycle. Scanning electron micrographs represent that the particle size of the ball-milled composites is quite even and averages around 50 nm. However, it changes into a widely distributed one ranging from 50 nm to 1 μm in the subsequent hydriding–dehydriding cycles. DSC measurement indicates that the doping of TiC can lower the dehydriding temperatures of sodium aluminum hydride.

Keywords

Dehydrogenation Hydrogen Storage Hydrogen Storage Capacity Hydrogen Capacity NaAlH4 

Notes

Acknowledgements

This work is jointly supported by the National Basic Research Program of China (2007CB209701), the National Natural Science Foundation of China (50871099, 50631020), the Program for New Century Excellent Talents in Universities (NCET-07-0741), and the China Postdoctoral Science Foundation (20080440196).

References

  1. 1.
    Bogdanović B, Schwickardi M (1997) J Alloys Compd 253–254:1CrossRefGoogle Scholar
  2. 2.
    Zidan RA, Takara S, Hee AG, Jensen CM (1999) J Alloys Compd 285:119CrossRefGoogle Scholar
  3. 3.
    Zaluska A, Zaluski L, Ström-Olsen JO (2000) J Alloys Compd 298:125CrossRefGoogle Scholar
  4. 4.
    Gross KJ, Thomas GJ, Jensen CM (2002) J Alloys Compd 330–332:683CrossRefGoogle Scholar
  5. 5.
    Anton DL (2003) J Alloys Compd 356–357:400CrossRefGoogle Scholar
  6. 6.
    Sun DL, Srinivasan SS, Chen GR, Jensen CM (2004) J Alloys Compd 373:265CrossRefGoogle Scholar
  7. 7.
    Wang P, Jensen CM (2004) J Phys Chem B 108:15827CrossRefGoogle Scholar
  8. 8.
    Bogdanović B, Felderhoff M, Pommerin A, Schuth F, Spielkamp N (2005) Adv Mater 18:1198CrossRefGoogle Scholar
  9. 9.
    Kang XD, Wang P, Cheng HM (2007) Int J Hydrogen Energy 32:2943CrossRefGoogle Scholar
  10. 10.
    Suttisawat Y, Rangsunvigit P, Kitiyanan B, Muangsin N, Kulprathipanja S (2007) Int J Hydrogen Energy 32:1277CrossRefGoogle Scholar
  11. 11.
    Weidenthaler C, Pommerin A, Felderhoff M, Bogdanović B, Schüth F (2003) Phys Chem Chem Phys 5:5149CrossRefGoogle Scholar
  12. 12.
    Sandrock G, Gross K, Thomas G (2002) J Alloys Compd 339:299CrossRefGoogle Scholar
  13. 13.
    Majzoub EH, Gross KJ (2003) J Alloys Compd 356–357:363CrossRefGoogle Scholar
  14. 14.
    Brinks HW, Jensen CM, Srinivasan SS, Hauback BC, Blanchard D, Murphy K (2004) J Alloys Compd 376:215CrossRefGoogle Scholar
  15. 15.
    Haiduc AG, Stil HA, Schwarz MA, Paulus P, Geerlings JJC (2005) J Alloys Compd 393:252CrossRefGoogle Scholar
  16. 16.
    Bogdanović B, Felderhoff M, Kaskel S, Pommerin A, Schlichte K, Schüth F (2003) Adv Mater 15:1012CrossRefGoogle Scholar
  17. 17.
    Lee GJ, Shim JH, Cho YW (2007) J Mater Sci 42:6302. doi: https://doi.org/10.1007/s10853-006-1173-6 CrossRefGoogle Scholar
  18. 18.
    Suttisawat Y, Jannatisin V, Rangsunvigit P, Kitiyanan B, Muangsin N, Kulprathipanja S (2007) J Power Sources 163:997CrossRefGoogle Scholar
  19. 19.
    Kojima I, Miyazaki EY, Yasumori I (1979) J Catal 59:472–474CrossRefGoogle Scholar
  20. 20.
    Kojima I, Miyazaki E (1984) J Catal 89:168–171CrossRefGoogle Scholar
  21. 21.
    Kang XD, Wang P, Cheng HM (2007) J Phys Chem C 111:4879CrossRefGoogle Scholar
  22. 22.
    Okada N, Genma R, Nishi Y, Uchida HH (2004) J Mater Sci 39:5503. doi: https://doi.org/10.1023/B:JMSC.0000039274.80645.5d CrossRefGoogle Scholar
  23. 23.
    Sun T, Zhou B, Wang H, Zhu M (2009) J Alloys Compd 467:413CrossRefGoogle Scholar
  24. 24.
    Thomas GJ, Gross KJ, Yang NYC, Jensen C (2002) J Alloys Compd 330–332:702CrossRefGoogle Scholar
  25. 25.
    Wang J, Ebner AD, Prozorov T, Zidan R, Ritter JA (2005) J Alloys Compd 395:252CrossRefGoogle Scholar
  26. 26.
    Gunaydin H, Houk KN, Ozolins V (2008) Proc Natl Acad Sci USA 105:3673CrossRefGoogle Scholar
  27. 27.
    Balde CP, Hereijgers BPC, Bitter JH, Jong KP (2006) Angew Chem Int Ed 45:3501CrossRefGoogle Scholar
  28. 28.
    Zheng SY, Fang F, Zhou GY, Chen GR, Ouyang LZ, Zhu M, Sun DL (2008) Chem Mater 20:3954CrossRefGoogle Scholar
  29. 29.
    Baldé CP, Hereijgers BPC, Bitter JH, Jong KP (2008) J Am Chem Soc 130:6761CrossRefGoogle Scholar
  30. 30.
    Bogdanović B, Brand RA, Marjanovic A, Schwickardi M, Tolle J (2000) J Alloys Compd 302:36CrossRefGoogle Scholar
  31. 31.
    Xiao XZ, Chen LX, Wang XH, Li SQ, Wang QD, Chen CP (2007) Int J Hydrogen Energy 32:3954CrossRefGoogle Scholar
  32. 32.
    Xiao XZ, Chen LX, Wang XH, Li SQ, Wang QD, Chen CP (2008) Int J Hydrogen Energy 33:64CrossRefGoogle Scholar
  33. 33.
    Xiao XZ, Chen LX, Fan XL, Wang XH, Chen CP, Lei YQ, Wang QD (2009) Appl Phys Lett 94:041907CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiulin Fan
    • 1
  • Xuezhang Xiao
    • 1
  • Jiechang Hou
    • 1
  • Zheng Zhang
    • 1
  • Yuanbo Liu
    • 1
  • Zhe Wu
    • 1
  • Changpin Chen
    • 1
  • Qidong Wang
    • 1
  • Lixin Chen
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations