Journal of Materials Science

, Volume 44, Issue 17, pp 4683–4691 | Cite as

Methods for determining the in-service life of polymer water pipes

  • J. M. B. SandersEmail author
  • M. A. Shepherd
  • H. M. S. Belmonte
  • J. P. Dear


A key requirement for polymer pipes, in having the ability to achieve a long in service life, is the retention by the polymeric material of its anti-oxidants. In dry air and other favourable environmental conditions the life-span of the polymer material can be many decades. However, when polymer pipes are transporting water and the pipes need to be installed in all kinds of ground conditions then the loss of anti-oxidant from the polymer can become more of a problem. To maintain integrity of water distribution networks, companies aim to plan for replacement of water pipes before they are likely to fail. This paper presents ways in which small scale evaluations of aged pipe material can be employed to assess remaining in-service life of water pipes. Small-scale chemical and physical evaluations have been devised to provide indicators of the ageing process with associated loss of mechanical properties. The presented studies were performed using MDPE and PE80 pipe materials. These materials were evaluated before and after ageing to identify which chemical and physical evaluations were the most appropriate to assess the remaining life of in service polymer pipes.


Hoop Stress Pipe Wall Chlorine Concentration Chemical Marker Pipe Material 



The authors wish to thank Ms. P. Carry for her help with the analytical treatments in this project. This research has been supported by ESPRC and Thames Water Utlities.


  1. 1.
    Kelen T (1983) Polymer degradation. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  2. 2.
    Schnabel W (1981) Polymer degradation—principles and practical applications. Hanser International, New YorkGoogle Scholar
  3. 3.
    Gedde UW, Ifwarson M (1990) Polym Eng Sci 30:202CrossRefGoogle Scholar
  4. 4.
    Gedde UW, Viebke J, Leijstrom H, Ifwarson M (1994) Polym Eng Sci 34:1773CrossRefGoogle Scholar
  5. 5.
    Karlsson K, Smith GD, Gedde UW (1992) Polym Eng Sci 32:649CrossRefGoogle Scholar
  6. 6.
    Verdu J, Colin X, Fayolle B, Audouin L (2007) J Test Eval 35:289Google Scholar
  7. 7.
    Viebke J, Gedde UW, Elble E (1996) Polym Eng Sci 36:458CrossRefGoogle Scholar
  8. 8.
    Viebke J, Gedde UW (1997) Polym Eng Sci 37:896CrossRefGoogle Scholar
  9. 9.
    Viebke J, Elble E, Ifwarson M, Gedde UW (1994) Polym Eng Sci 34:1354CrossRefGoogle Scholar
  10. 10.
    Viebke J, Hedenqvist M, Gedde UW (1996) Polym Eng Sci 36:2896CrossRefGoogle Scholar
  11. 11.
    Viebke J, Gedde UW (1998) Polym Eng Sci 38:1244CrossRefGoogle Scholar
  12. 12.
    Woo L, Khare AR, Sandford CL, Ling MTK, Ding SY (2001) J Therm Anal Cal 64:539CrossRefGoogle Scholar
  13. 13.
    Woo LC, Ling MTK, Eu B, Sandford C (2006) Thermochim Acta 442:61CrossRefGoogle Scholar
  14. 14.
    Sombatsompop N, Sungsanit K, Thongpin C (2004) Polym Eng Sci 44:487CrossRefGoogle Scholar
  15. 15.
    Kaci M, Sadoun T, Cimmino S (2000) Macromol Mater Eng 278:36CrossRefGoogle Scholar
  16. 16.
    Allara DL (1975) Environ Health Perspect 11:29CrossRefGoogle Scholar
  17. 17.
    White JR, Turnbull A (1994) J Mater Sci 29:584. doi: CrossRefGoogle Scholar
  18. 18.
    Graice IM, Younan MYA, Naga SAR (2005) J Pressure Vessel Technol Trans ASME 127:70CrossRefGoogle Scholar
  19. 19.
    Gray AP (1970) Thermochim Acta 1:563CrossRefGoogle Scholar
  20. 20.
    Wunderlich B (1980) Macromolecular physics—vol 3, Crystal melting. Academic Press, New YorkGoogle Scholar
  21. 21.
    Schmid M, Ritter A, Affolter S (2006) J Therm Anal Cal 83:367CrossRefGoogle Scholar
  22. 22.
    Koski L, Saarela K (1982) J Therm Anal 25:167CrossRefGoogle Scholar
  23. 23.
    Schmid M, Affolter S (2003) Polym Test 22:419CrossRefGoogle Scholar
  24. 24.
    Bellamy LJ (1975) The infrared spectra of complex molecules, vol 1. Chapman and Hall, LondonCrossRefGoogle Scholar
  25. 25.
    Bellamy LJ (1975) The infrared spectra of complex molecules, vol 2—advances in infrared group frequencies. Chapman and Hall, LondonGoogle Scholar
  26. 26.
    Mason NS (1998) PhD thesis, Imperial College, LondonGoogle Scholar
  27. 27.
    Hassinen J, Lundback M, Ifwarson M, Gedde UW (2004) Polym Degrad Stab 84:261CrossRefGoogle Scholar
  28. 28.
    Pinter G, Haager M, Balika W, Lang RW (2007) Polym Test 26:180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. M. B. Sanders
    • 1
    Email author
  • M. A. Shepherd
    • 2
  • H. M. S. Belmonte
    • 2
  • J. P. Dear
    • 1
  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Thames Water Utilities, Research & DevelopmentInnovation CentreReadingUK

Personalised recommendations