Journal of Materials Science

, Volume 44, Issue 22, pp 5960–5979 | Cite as

Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys

  • V. I. DybkovEmail author
  • V. G. Khoruzha
  • V. R. Sidorko
  • K. A. Meleshevich
  • A. V. Samelyuk
  • D. C. Berry
  • K. Barmak
Interface Science


Dissolution kinetics of cobalt in liquid 87.5%Sn–7.5%Bi–3%In–1%Zn–1%Sb and 80%Sn–15%Bi–3%In–1%Zn–1%Sb soldering alloys and phase formation at the cobalt–solder interface have been investigated in the temperature range of 250–450 °C. The temperature dependence of the cobalt solubility in soldering alloys was found to obey a relation of the Arrhenius type cs = 4.06 × 102 exp (−46300/RT) mass% for the former alloy and cs = 5.46 × 102 exp (−49200/RT) mass% for the latter, where R is in J mol−1 K−1 and T in K. For tin, the appropriate equation is cs = 4.08 × 102 exp (−45200/RT) mass%. The dissolution rate constants are rather close for these soldering alloys and vary in the range (1–9) × 10−5 m s−1 at disc rotational speeds of 6.45–82.4 rad s−1. For both alloys, the CoSn3 intermetallic layer is formed at the interface of cobalt and the saturated or undersaturated solder melt at 250 °C and dipping times up to 1800 s, whereas the CoSn2 intermetallic layer occurs at higher temperatures of 300–450 °C. Formation of an additional intermetallic layer (around 1.5 μm thick) of the CoSn compound was only observed at 450 °C and a dipping time of 1800 s. A simple mathematical equation is proposed to evaluate the intermetallic-layer thickness in the case of undersaturated melts. The tensile strength of the cobalt-to-solder joints is 95–107 MPa, with the relative elongation being 2.0–2.6%.


Cobalt Intermetallic Layer Liquid Solder Dissolution Rate Constant Disc Rotational Speed 



This investigation was supported in part by the CRDF Grant No. UKE2-2698-KV-06. The authors thank D.M. Pashko for machining cobalt specimens and other mechanical work, L.A. Duma for taking X-ray patterns, L.M. Kuzmenko for carrying out chemical analyses, E.S. Rabotina for making metallic cross-sections, and I.G. Kondratenko and S.V. Bykova for their help in conducting the experiments.


  1. 1.
    Frear DR (1999) JOM 51:22CrossRefGoogle Scholar
  2. 2.
    Lee MS, Chen C, Kao CR (1999) Chem Mater 11:292CrossRefGoogle Scholar
  3. 3.
    Tao WH, Chen C, Ho CE, Chen WT, Kao CR (2001) Chem Mater 13:1051CrossRefGoogle Scholar
  4. 4.
    Lalena JN, Dean NF, Weiser MW (2002) J Electron Mater 31:1244CrossRefGoogle Scholar
  5. 5.
    Chiu MY, Wang SS, Chuang TH (2002) J Electron Mater 31:494CrossRefGoogle Scholar
  6. 6.
    Alam MO, Chan YC, Tu KN (2003) J Appl Phys 94:4108CrossRefGoogle Scholar
  7. 7.
    Yoon J-W, Kim S-W, Koo J-M, Kim D-G, Jung S-B (2004) J Electron Mater 33:1190CrossRefGoogle Scholar
  8. 8.
    Lee H-T, Lin H-S, Lee C-S, Chen P-W (2005) Mater Sci Eng A 407:36CrossRefGoogle Scholar
  9. 9.
    Liu PL, Shang JK (2005) Scripta Mater 53:631CrossRefGoogle Scholar
  10. 10.
    Rizvi MJ, Chan YC, Bailey C, Lu H, Islam MN (2006) J Alloys Compd 407:208CrossRefGoogle Scholar
  11. 11.
    Wang C-h, Chen S-w (2006) Acta Mater 54:247CrossRefGoogle Scholar
  12. 12.
    Suganuma K, Lee J-E, Kim K-S (2007) In: Abstracts MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E1.6Google Scholar
  13. 13.
    Bieler T, Borgesen P, Xing Y, Lehman L, Cotts E (2007) In: Abstracts of MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E4.6Google Scholar
  14. 14.
    Chason E, Reinbold L, Jadhav N, Kelly V, Shin JW, Buchovecky E, Hariharaputran R, Kumar S (2007) In: Abstracts of MRS 2007 Spring meeting, San Francisco, CA, 9–13 April 2007, E2.4Google Scholar
  15. 15.
    Ursula K, Moon K, Handwerker C (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 344Google Scholar
  16. 16.
    Anderson IE, Walleser J, Rehbein D, Kracher A, Harringa J (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 344Google Scholar
  17. 17.
    Grossklaus KA, Handwerker CA, Stach EA, Revur RR, Sengupta S, Hwang H (2007) In: Abstracts of materials science and technology 2007 conference and exhibition, Detroit, MI, 16–20 September 2007, p 345Google Scholar
  18. 18.
    Ogunseitan OA (2007) JOM 59(7):12CrossRefGoogle Scholar
  19. 19.
    Subramanian KN (ed) (2007) Lead-free electronic solders. Springer, Berlin, 378 ppGoogle Scholar
  20. 20.
    Tu KN (2007) Solder joint technology. Springer, Berlin, p 370Google Scholar
  21. 21.
    Zhu W, Wang J, Liu H, Jin Z, Gong W (2007) Mater Sci Eng 456:109CrossRefGoogle Scholar
  22. 22.
    Wang H, Wang F, Gao F, Ma X, Qian Y (2007) J Alloys Compd 433:302CrossRefGoogle Scholar
  23. 23.
    Lin C-T, Hsi C-S, Wang M-C, Chang T-C, Liang M-K (2008) J Alloys Compd 459:225CrossRefGoogle Scholar
  24. 24.
    Barmak K, Berry DC, Khoruzha VG, Sidorko VR, Meleshevich KA, Samelyuk AV, Dybkov VI (2008) In: Proceedings of the materials science and technology conference: Pb-free, Pb-bearing joining and packaging materials and processes for microelectronics, Pittsburgh, PA, 5–9 October 2008, p 262Google Scholar
  25. 25.
    Cheng F, Nishikawa H, Takemoto T (2008) J Mater Sci 43:3643. doi: CrossRefGoogle Scholar
  26. 26.
    Gao F, Cheng F, Nishikawa H, Takemoto T (2008) Mater Lett 62:2257CrossRefGoogle Scholar
  27. 27.
    Liu CZ, Zhang W (2009) J Mater Sci 44:149. doi: CrossRefGoogle Scholar
  28. 28.
    Ma H, Suhling JC (2009) J Mater Sci 44:1141. doi: CrossRefGoogle Scholar
  29. 29.
    Cheng F, Gao F, Nishikawa H, Takemoto T (2009) J Alloys Compd 472:530CrossRefGoogle Scholar
  30. 30.
    Wang F, O’Keefe M, Brinkmeyer B (2009) J Alloys Compd 477:267CrossRefGoogle Scholar
  31. 31.
    Wang YW, Chang CC, Kao CR (2009) J Alloys Compd 478:L1CrossRefGoogle Scholar
  32. 32.
    Wang YW, Lin YW, Tu CT, Kao CR (2009) J Alloys Compd 478:121CrossRefGoogle Scholar
  33. 33.
    Hauffe K (1955) Reaktionen in und an festen Stoffen. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Seith W (1955) Diffusion in metallen. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Hedvall JA (1966) Solid state chemistry. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Chebotin VN (1982) Fizicheskaya khimiya tverdogo tela. Khimiya, MoskwaGoogle Scholar
  37. 37.
    Dybkov VI (2002) Reaction diffusion and solid state chemical kinetics. IPMS, KyivGoogle Scholar
  38. 38.
    Hansen M (1958) Constitution of binary alloys. McGraw-Hill, New YorkCrossRefGoogle Scholar
  39. 39.
    Lashko SV, Lashko NF (1988) Paika metallov. Mashinostroenie, MoskwaGoogle Scholar
  40. 40.
    Shunk FA (1969) Constitution of binary alloys: second supplement. McGraw-Hill, New YorkGoogle Scholar
  41. 41.
    Massalski TB, Murray JL, Bennett LH, Baker H (eds) (1986) Binary alloy phase diagrams, vol 2. American Society of Metals, Metals ParkGoogle Scholar
  42. 42.
    Lyakishev NP (ed) (1999) Diagrammy sostoyaniya dvoynikh metallicheskikh sistem, vol 3, Part 1. Mashinostroenie, MoskwaGoogle Scholar
  43. 43.
    Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K (2004) Calphad 28:213CrossRefGoogle Scholar
  44. 44.
    Okamoto H (2006) J Phase Equilib Diffus 27:308CrossRefGoogle Scholar
  45. 45.
    Gurov KP, Kartashkin BA, Ugaste YuE (1981) Vzaimnaya diffusiya v mnogofaznikh metallicheskikh sistemakh. Nauka, MoskwaGoogle Scholar
  46. 46.
    Barmak K, Dybkov VI (2003) J Mater Sci 38:3249. doi: CrossRefGoogle Scholar
  47. 47.
    Dybkov VI, Barmak K, Lengauer W, Gas P (2005) J Alloys Compd 389:61CrossRefGoogle Scholar
  48. 48.
    Levich VG (1959) Fiziko-Khimicheskaya Hidrodinamika. Fizmatgiz, MoskwaGoogle Scholar
  49. 49.
    Kassner TF (1967) J Electrochem Soc 114:689CrossRefGoogle Scholar
  50. 50.
    Vol AE (1962) Stroeniye i svoistva dvoynikh metallicheskikh system, vol 2. Fizmatgiz, MoskwaGoogle Scholar
  51. 51.
    Lang A, Jeitschko W (1996) Z Metallkd 87:759Google Scholar
  52. 52.
    Nial O (1938) Z Anorg Allg Chem 238:287CrossRefGoogle Scholar
  53. 53.
    Matveyeva NM, Nikitina SV, Zezin SB (1968) Izv Akad Nauk SSSR Met 5:194Google Scholar
  54. 54.
    Djega Mariadassou C, Lecocq P, Michel A (1969) Ann Chim 4:175Google Scholar
  55. 55.
    Panteleimonov LA, Portnova GF, Nesterova OP (1971) Vestnik Moskov Univ Khimiya 26:79Google Scholar
  56. 56.
    Havinga EE, Damsma H, Hokkeling P (1972) J Less-Common Met 27:169CrossRefGoogle Scholar
  57. 57.
    Buschow KHJ, van Engen PG, Jongebreur R (1983) J Magn Magn Mater 38:1CrossRefGoogle Scholar
  58. 58.
    Cobalt Tin, ICDD, PDF2, 1999, File 00-02-0559, α-CoSn3 Google Scholar
  59. 59.
    Cobalt Tin, Pauling File Binary Edition, Inorganic Materials, 2002.
  60. 60.
    Chao Y-H, Chen S-W, Chang C-H, Chen C-C (2008) Metall Mater Trans A 39:477CrossRefGoogle Scholar
  61. 61.
    Zhu W, Liu H, Wang J, Jin Z (2008) J Alloys Compd 456:113CrossRefGoogle Scholar
  62. 62.
    Wang C-h, Chen S-w (2007) J Mater Res 22:3404CrossRefGoogle Scholar
  63. 63.
    Dybkov VI (2009) JOM 61:78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • V. I. Dybkov
    • 1
    Email author
  • V. G. Khoruzha
    • 1
  • V. R. Sidorko
    • 1
  • K. A. Meleshevich
    • 1
  • A. V. Samelyuk
    • 1
  • D. C. Berry
    • 2
  • K. Barmak
    • 2
  1. 1.Department of Physical Chemistry of Inorganic MaterialsInstitute for Problems of Materials ScienceKyivUkraine
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations