Journal of Materials Science

, Volume 44, Issue 17, pp 4661–4667 | Cite as

Synthesis of β-SiC nanostructures via the carbothermal reduction of resorcinol–formaldehyde/SiO2 hybrid aerogels

  • Xintong Li
  • Xiaohong Chen
  • Huaihe SongEmail author


The novel resorcinol–formaldehyde/SiO2 (RF/SiO2) hybrid aerogels were chosen to synthesize the cubic silicon carbide (β-SiC) nanostructures via a carbothermal reduction route. In this process, the in situ polymerized RF/SiO2 aerogels were used as both the silicon and carbon sources. The morphologies and structures of SiC nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and high-resolution transmission electron microscope (HRTEM) equipped with EDS. The effects of C/Si atomic ratios in RF/SiO2 aerogels and heat treatment temperatures on the formation of SiC nanomaterials were investigated in detail. It was shown that β-SiC nanowhiskers with diameters of 50–150 nm and high crystallinity were obtained at the temperatures from 1400 to 1500 °C. The role of the interpenetrating network of RF/SiO2 hybrid aerogels in the carbothermal reduction was discussed and a possible mechanism was proposed.


Resorcinol Carbothermal Reduction Hybrid Aerogel Saturated Electron Drift Velocity Direct Heat Treatment 



This work was supported by the National Natural Science Foundation of China (50572003) and State Key Basic Research Program of China (2006CB9326022006).


  1. 1.
    Xi GC, Liu YK, Liu XY, Wang XQ, Qian YT (2006) J Phys Chem B 110:14172CrossRefGoogle Scholar
  2. 2.
    Pol VG, Pol SV, Gedanken A (2005) Chem Mater 17:1797CrossRefGoogle Scholar
  3. 3.
    Pham-Huu C, Estournes C, Heinrich B, Ledoux MJ (1998) J Chem Soc Faraday Trans 94:435CrossRefGoogle Scholar
  4. 4.
    Pham-Huu C, Estournes C, Heinrich B, Ledoux MJ (1998) J Chem Soc Faraday Trans 94:443CrossRefGoogle Scholar
  5. 5.
    Suwanmethanond V, Goo E, Liu PKT, Johnston G, Sahimi M, Tsotsis TT (2000) Ind Eng Chem Res 39:3264CrossRefGoogle Scholar
  6. 6.
    Pham-Huu C, Gallo PD, Peschiera E, Ledoux MJ (1995) Appl Catal A 132:77CrossRefGoogle Scholar
  7. 7.
    Moene R, Tijsen EPAM, Makkee M, Moulijn JA (1999) Appl Catal A 184:127CrossRefGoogle Scholar
  8. 8.
    Moene R, Makkee M, Moulijn JA (1998) Appl Catal A 167:321CrossRefGoogle Scholar
  9. 9.
    Keller N, Pham-Huu C, Crouzet C, Ledoux MJ, Savin-Poncet S, Nougayrede JB, Bousquet J (1992) Catal Today 53:535CrossRefGoogle Scholar
  10. 10.
    Keller N, Pham-Huu C, Ledoux MJ (2001) Appl Catal A 217:205CrossRefGoogle Scholar
  11. 11.
    Keller N, Pham-Huu C, Estournes C, Ledoux MJ (1999) Catal Lett 61:151CrossRefGoogle Scholar
  12. 12.
    Shi YF, Meng Y, Chen DH, Cheng SJ, Chen P, Yang HF, Wan Y, Zhao DY (2006) Adv Funct Mater 16:561CrossRefGoogle Scholar
  13. 13.
    Hu JQ, Lu QY, Tang KB, Qian YT, Zhou GE, Liu XM, Wu JX (1999) Chem Mater 11:2369CrossRefGoogle Scholar
  14. 14.
    Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) J Am Chem Soc 124:14464CrossRefGoogle Scholar
  15. 15.
    Pitcher MW, Joray SJ, Bianconi PA (2004) Adv Mater 16:706CrossRefGoogle Scholar
  16. 16.
    Shin YS, Wang CM, Exarhos GL (2005) Adv Mater 17:73CrossRefGoogle Scholar
  17. 17.
    Pan ZW, Lai HL, Au FCK, Duan XF, Zhou WY, Shi WS, Wang N, Lee CS, Wong NB, Lee ST, Xie SS (2000) Adv Mater 12:1186CrossRefGoogle Scholar
  18. 18.
    Niu JJ, Wang JN (2007) Eur J Inorg Chem 25:4006CrossRefGoogle Scholar
  19. 19.
    Niu JJ, Wang JN (2007) J Phys Chem B 111:4368CrossRefGoogle Scholar
  20. 20.
    Li XK, Liu L, Zhang YX, Ling LC, Shen SD, Ge S (2001) Carbon 39:159CrossRefGoogle Scholar
  21. 21.
    Jin GQ, Guo XY (2003) Microporous Mesoporous Mater 60:207CrossRefGoogle Scholar
  22. 22.
    Guo XY, Jin GQ (2005) J Mater Sci 40:1301. doi: CrossRefGoogle Scholar
  23. 23.
    Hao YJ, Jin GQ, Han XD, Guo XY (2006) Mater Lett 60:1334CrossRefGoogle Scholar
  24. 24.
    Zheng Y, Zheng Y, Lin LX, Ni J, Wei KM (2006) Scr Mater 55:883CrossRefGoogle Scholar
  25. 25.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  26. 26.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  27. 27.
    Koumoto K, Takeda S, Pai CH, Sato T, Yanagida H (1989) J Am Ceram Soc 72:1985CrossRefGoogle Scholar
  28. 28.
    Joint Committee on Powder Diffraction Standards (JCPDS) 29-1129Google Scholar
  29. 29.
    Liao LS, Bao XM, Yang ZF, Min NB (1995) Appl Phys Lett 66:2382CrossRefGoogle Scholar
  30. 30.
    Cambaz GZ, Yushin GN, Gogotsi Y, Lutsenko VG (2006) Nano Lett 6:548CrossRefGoogle Scholar
  31. 31.
    Chen XH, Yang SX, Song HH (2006) Adv Mater Res 11–12:619CrossRefGoogle Scholar
  32. 32.
    Yao JF, Wang HT, Zhang XY, Zhu W, Wei JP, Cheng YB (2007) J Phys Chem C 111:636CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations