Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4645–4652 | Cite as

Design of artificial lotus leaves using nonwoven fabric

  • Hoon Joo LeeEmail author
Article

Abstract

The apparent contact angles of a droplet deposited on the surfaces of thermal-bonded nonwoven fabrics were presented, and the characteristics required for a superhydrophobic surface were described. For a nonwoven superhydrophobic surface, the Cassie–Baxter model describes the wetting of rough surfaces. Using topological and chemical surface modifications of nylon 6,6 nonwoven fabric, artificial Lotus leaves having water contact angles >150° were prepared. Good agreement between the predictions based on the original Cassie–Baxter model and experiments was obtained. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. Superhydrophobic surfaces were prepared by two criteria: a low-surface energy and a properly designed surface roughness.

Keywords

Contact Angle Water Contact Angle Superhydrophobic Surface Nonwoven Fabric Apparent Contact Angle 

Notes

Acknowledgement

I appreciate the support by US Army Natick Soldier Research Development and Engineering Center (NSRDEC), Air Force Research Lab (AFRL), and Defense Threat Reduction Agency (DTRA).

References

  1. 1.
    Baldacchini T, Carey JE, Zhou M, Mazur E (2006) Langmuir 22:4917CrossRefGoogle Scholar
  2. 2.
    Bormashenko E, Pogreb R, Stanevsky O, Biton Y, Bormashenko Y (2004) J Mater Sci 39:6639. doi: https://doi.org/10.1023/B:JMSC.0000044911.64725.b6 CrossRefGoogle Scholar
  3. 3.
    Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R (2007) Langmuir 23:1608CrossRefGoogle Scholar
  4. 4.
    Dhindsa MS, Smith NR, Heikenfeld J (2006) Langmuir 22:9030CrossRefGoogle Scholar
  5. 5.
    Nicolas M, Guittard F, Geribaldi S (2006) Langmuir 22:3081CrossRefGoogle Scholar
  6. 6.
    Wang C, Wang Y, Tung P, Kuo S, Lin C, Sheen Y, Chang F (2006) Langmuir 22:8289CrossRefGoogle Scholar
  7. 7.
    Zhang L, Zhou Z, Cheng B, Desimone JM, Samulski ET (2006) Langmuir 22:8576CrossRefGoogle Scholar
  8. 8.
    Takeda K, Sasaki M, Katayama T, Kako T, Hashimoto K, Watanabe T, Nakajima A (2001) J Mater Sci Lett 20:2131CrossRefGoogle Scholar
  9. 9.
    Barthlott W, Neinhuis C (1997) Planta 202:1CrossRefGoogle Scholar
  10. 10.
    Mchale G, Shirtcliffe NJ, Newton MI (2004) Langmuir 20:10146CrossRefGoogle Scholar
  11. 11.
    Neinhuis C, Barthlott W (1997) Ann Bot 79:667CrossRefGoogle Scholar
  12. 12.
    Lee HJ, Michielsen S (2007) J Polym Sci B Polym Phys 45:253CrossRefGoogle Scholar
  13. 13.
    Lee HJ, Michielsen S (2006) J Textile Inst 97:455CrossRefGoogle Scholar
  14. 14.
    Tobiesen FA, Michielsen S (2002) J Polym Sci A Polym Chem 40:719CrossRefGoogle Scholar
  15. 15.
    Michielsen S, Lee HJ (2007) Langmuir 23:6004CrossRefGoogle Scholar
  16. 16.
    Wenzel RN (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  17. 17.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  18. 18.
    Mamur A (2003) Langmuir 19:8343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of TextilesNorth Carolina State UniversityRaleighUSA

Personalised recommendations