Journal of Materials Science

, Volume 44, Issue 17, pp 4750–4753 | Cite as

Preparation of spherical activated carbon with hierarchical porous texture

  • Yue Liu
  • Kaixi LiEmail author
  • Jianlong Wang
  • Guohua Sun
  • Chenggong Sun


Hierarchical porous carbons can exhibit excellent adsorption performance due to their high connectivity of narrow pores provided by the textural transport pores that allowing rapidly deep penetration of adsorbate molecules into the pore network [1, 2]. They have been attracting widespread attention due to their potential technological applications, such as in adsorption of harmful materials in liquid or gas phase, in catalyst support, and as carbon electrode for supercapacitors [3, 4, 5, 6, 7, 8, 9, 10, 11]. The hierarchical micro/meso-porous carbons have been prepared by CO2 activation of ordered mesoporous carbon and utilized as the electrode material for supercapacitor [12]. Meanwhile, a hierarchical meso/macro-porous carbon monolith has been obtained by using Pluronic F127 and SiO2 opal as the templates [13]. In addition, a 3D aperiodic hierarchical porous graphitic carbon material has also been reported [14]. All of these porous carbons exhibited notable...


Mercury Porosimetry Porous Graphitic Carbon Cumulative Pore Volume Phenol Resin Carbon Monolith 



This study is financially supported by National Nature Science Foundation of China (No. 50272070).

Supplementary material

10853_2009_3710_MOESM1_ESM.doc (85 kb)
Supplementary material 1 (DOC 85 kb)


  1. 1.
    Stein A, Wang ZY, Fierke MA (2009) Adv Mater 21:265CrossRefGoogle Scholar
  2. 2.
    Gun’ko VM, Kozynchenko OP, Turov VV, Tennison SR, Zarko VI, Nychiporuk YM et al (2008) Colloids Surf A Physicochem Eng Asp 317:377CrossRefGoogle Scholar
  3. 3.
    Tang DY, Zheng Z, Lin K, Luan JF, Zhang JB (2007) J Hazard Mater 143:49CrossRefGoogle Scholar
  4. 4.
    Mirzaeian M, Hall PJ (2009) J Mater Sci 44:2705. doi: CrossRefGoogle Scholar
  5. 5.
    Shen WZ, Wang H, Guan RG, Li ZJ (2008) Coll Surf A 331:263CrossRefGoogle Scholar
  6. 6.
    Tamai H, Kunihiro M, Morita M, Yasuda H (2005) J Mater Sci 40:3703. doi: CrossRefGoogle Scholar
  7. 7.
    Kötz R, Carlen M (2000) Electrochim Acta 45:2483CrossRefGoogle Scholar
  8. 8.
    Qu D, Shi H (1998) J Power Sources 74:99CrossRefGoogle Scholar
  9. 9.
    Frackowiak E, Béguin F (2001) Carbon 39:937CrossRefGoogle Scholar
  10. 10.
    Zhang M, Hou YG, Yan GJ (2008) J Mater Sci 43:1376. doi: CrossRefGoogle Scholar
  11. 11.
    Tseng HH, Wey MY, Fu CH (2003) Carbon 41:139CrossRefGoogle Scholar
  12. 12.
    Xia KS, Gao QM, Jiang JH, Hu J (2008) Carbon 46:1718CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Zheng MB, Cao JM, Ke XF, Liu JS, Chen YP et al (2008) Mater Lett 62:548CrossRefGoogle Scholar
  14. 14.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373CrossRefGoogle Scholar
  15. 15.
    Alvarez S, Esquena J, Solans C, Fuertes AB (2004) Adv Eng Mat 6:897CrossRefGoogle Scholar
  16. 16.
    Ecsedi Z, Lazău I, Păcurariu C (2009) Microporous Mesoporous Mater 118:453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yue Liu
    • 1
    • 2
  • Kaixi Li
    • 1
    Email author
  • Jianlong Wang
    • 1
  • Guohua Sun
    • 1
  • Chenggong Sun
    • 3
  1. 1.Key Laboratory of Carbon Materials, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.School of Chemical, Environmental and Mining EngineeringUniversity of NottinghamUniversity Park, NottinghamUK

Personalised recommendations