Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6538–6545 | Cite as

Organic solvent treatment and physicochemical properties of nanoporous polymer–SBA-15 composite materials

  • Magali Wainer
  • Louis Marcoux
  • Freddy KleitzEmail author
Mesostructured Materials

Abstract

Mesoporous polymer–silica composites are attractive new materials because these systems can combine the advantages of highly porous silica and the vast functional diversity of organic polymers in a single robust structure. This contribution deals with the effects of organic solvent treatment on the physicochemical properties of mesostructured polymer–SBA-15 silica nanocomposites. For this study, two distinct reference mesoporous nanocomposites were prepared using a previously reported surface-confined polymerization technique, e.g., poly(styrene)(PS)–SBA-15 composite and poly(2-hydroxyethyl methacrylate)(PHEMA)–SBA-15 composite. The resulting materials are treated either with chloroform or toluene under heating for a prolonged period of time (24 h). Both materials are characterized prior and after solvent treatment by nitrogen physisorption at −196 °C, thermogravimetry and Attenuated Total Reflection Infra-Red (ATR-IR) spectroscopy. In general, solvent stability is excellent for both types of composite, even for low cross-linking degree of the polymer. Our data reveal that a treatment of mesoporous PHEMA–SBA-15 with chloroform or toluene has a minor, but reproducible, effect on the composite material in terms of porosity. Here, a reorganization of the polymer layer–silica interface seems to occur to some extent, which is leading to slight variation of the intrawall porosity. As a consequence, an increase of the thermal stability is clearly observed, with, however, no marked difference in the mean mesopore diameter. On the other hand, the PS–SBA-15 composite treated with the same solvents shows higher specific surface area values and an improved homogeneity in terms of polymer coating compared to untreated materials, especially for composites synthesized using benzoyle peroxide as the polymerization initiator. However, no increase in thermal stability is observed in this case.

Keywords

PHEMA Solvent Treatment Silica Composite Silica Interface Specific Surface Area Increase 

Notes

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) are gratefully acknowledged. The authors wish to thank Prof. Michel Pézolet and Jean-François Rioux for the access to ATR-IR measurements (Chemistry Department, Laval University).

References

  1. 1.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  2. 2.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  3. 3.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56CrossRefGoogle Scholar
  4. 4.
    Thomas JM (1999) Angew Chem Int Ed 38:3589CrossRefGoogle Scholar
  5. 5.
    Taguchi A, Schuth F (2005) Microporous Mesoporous Mater 77:1CrossRefGoogle Scholar
  6. 6.
    Tiemann M (2007) Chem Eur J 13:8376CrossRefGoogle Scholar
  7. 7.
    Hartmann M (2005) Chem Mater 17:4577CrossRefGoogle Scholar
  8. 8.
    Vallet-Regi M, Balas F, Arcos D (2007) Angew Chem Int Ed 46:7548CrossRefGoogle Scholar
  9. 9.
    Wight AP, Davis ME (2002) Chem Rev 102:3589CrossRefGoogle Scholar
  10. 10.
    Kickelbick G (2004) Angew Chem Int Ed 43:3102CrossRefGoogle Scholar
  11. 11.
    Yoshitake H (2005) New J Chem 29:1107CrossRefGoogle Scholar
  12. 12.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216CrossRefGoogle Scholar
  13. 13.
    Stein A (2003) Adv Mater 15:763CrossRefGoogle Scholar
  14. 14.
    Wu CC, Bein T (1994) Science 264:1757CrossRefGoogle Scholar
  15. 15.
    Moller K, Bein T, Fischer RX (1998) Chem Mater 10:1841CrossRefGoogle Scholar
  16. 16.
    Cho MS, Choi HJ, Kim KY, Ahn WS (2002) Macromol Rapid Commun 123:713CrossRefGoogle Scholar
  17. 17.
    Acosta EJ, Carr CS, Simanek EE, Shantz DF (2004) Adv Mater 16:985CrossRefGoogle Scholar
  18. 18.
    Molenkamp WC, Watanabe M, Miyata H, Tolbert SH (2004) J Am Chem Soc 126:4476CrossRefGoogle Scholar
  19. 19.
    Rosenholm JM, Penninkangas A, Linden M (2006) Chem Commun 3909Google Scholar
  20. 20.
    Choi M, Kleitz F, Liu D, Lee HY, Ahn WS, Ryoo R (2005) J Am Chem Soc 127:1924CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zhao L, Lee SS, Ying JY (2006) Adv Synth Catal 348:2027CrossRefGoogle Scholar
  22. 22.
    Zhang L, Abbenhuis HCL, Gerritsen G, Bhriain NN, Magusin PCMM, Mezari B, Han W, van Santen RA, Yang Q, Li C (2007) Chem Eur J 13:1210CrossRefGoogle Scholar
  23. 23.
    Fuertes AB, Tartaj P (2007) Small 3:275CrossRefGoogle Scholar
  24. 24.
    Tian BS, Yang C (2009) J Phys Chem C 113:4357CrossRefGoogle Scholar
  25. 25.
    Marcoux L, Kim TW, Bilodeau S, Kleitz F (2007) Stud Surf Sci Catal 170:1836CrossRefGoogle Scholar
  26. 26.
    Choi M, Heo W, Kleitz F, Ryoo R (2003) Chem Commun 1340Google Scholar
  27. 27.
    Ravikovitch PI, Neimark AV (2001) J Phys Chem B 105:6817CrossRefGoogle Scholar
  28. 28.
    Thommes M (2004) Nanoporous materials; science and engineering. ICP, London, UKGoogle Scholar
  29. 29.
    Rosenholm JM, Czuryszkiewicz T, Kleitz F, Rosenholm JB, Lindén M (2007) Langmuir 23:4315CrossRefGoogle Scholar
  30. 30.
    Galarneau A, Cambon H, Di Renzo F, Ryoo R, Choi M, Fajula F (2003) New J Chem 27:73CrossRefGoogle Scholar
  31. 31.
    Aydin B, Bilodeau S, Hamidipour M, Larachi F, Kleitz F (2008) Ind Eng Chem Res 47:2569CrossRefGoogle Scholar
  32. 32.
    Boulet-Audet M, Lefevre T, Buffeteau T, Pezolet M (2008) Appl Spec 62:956CrossRefGoogle Scholar
  33. 33.
    Landry CT, Coltrain BK, Wesson JA, Zumbulyadis N, Lippert JL (1992) Polymer 33:1496CrossRefGoogle Scholar
  34. 34.
    Onida B, Allian M, Borello E, Ugliengo P, Garrone E (1997) Langmuir 13:5107CrossRefGoogle Scholar
  35. 35.
    Levchik GF, Si K, Levchik SV, Camino G, Wilkie CA (1999) Polym Degrad Stab 65:395CrossRefGoogle Scholar
  36. 36.
    Van Krevelen DW (1975) Polymer 16:615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Canada Research Chair on Functional Nanostructured Materials, Department of ChemistryUniversité LavalQuebecCanada

Personalised recommendations