Journal of Materials Science

, Volume 44, Issue 17, pp 4617–4624 | Cite as

Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels

  • C. Garcia-MateoEmail author
  • F. G. Caballero
  • J. Chao
  • C. Capdevila
  • C. Garcia de Andres


New carbide free bainitic microstructures are gaining an increasing interest on behalf the scientific and industrial community. The excellent combination of mechanical properties achieved in those microstructures with no need of complex heat treatments or thermomechanical processes represents their main advantage. The strength is mainly achieved by means of the very fine bainitic ferrite plates, consequence of the transformation mechanism, but the parameters contributing to the ductility of those microstructures are still unclear in this type of microstructures, where a soft phase, retained austenite, is imbibed in a very strong matrix of bainitic ferrite. A priori is reasonable to assume that retained austenite will control the levels of ductility achieved. Further enhancement of ductility can be achieved by the transformation of retained austenite into martensite (strain or stress assisted), thus its mechanical stability plays an important role in the final ductility. In this study, by means of X-ray analysis of interrupted compression tests, it is studied the influence that different microstructural aspects of retained austenite may have on its mechanical stability.


Ferrite Austenite Martensite Bainite Bainitic Ferrite 



The authors gratefully acknowledge the support of Spanish Ministerio de Ciencia y Tecnología Plan Nacional de I_D_I (2004–2007) funding this research under the contract MAT2007–63873. All of us want to thank to T. Iung and S. Allain (ARCELOR RESEARCH) for manufacturing the designed alloys. We are also extremely grateful to M. J. Santofimia for her contribution to the design and development of these alloys and to M. Arias Ruiz de Larramendi for preliminary mechanical tests performed in these alloys.


  1. 1.
    Caballero FG, Santofimia MJ, Capdevila C, García-Mateo C, García de Andrés C (2006) ISIJ Int 46:1479CrossRefGoogle Scholar
  2. 2.
    Sandvik BPJ, Nevalainen HP (1981) Met Technol 15:213CrossRefGoogle Scholar
  3. 3.
    Bhadeshia HKDH (2001) Bainite in steels, 2nd edn. Institute Materials, LondonGoogle Scholar
  4. 4.
    Caballero FG, García-Mateo C, Chao J, Santofimia MJ, Capdevila C, García de Andrés C (2008) ISIJ Int 48:1256CrossRefGoogle Scholar
  5. 5.
    Caballero FG, Santofimia MJ, Garcia-Mateo C, Chao J, Garcia de Andres C (2009) Mater Des 30:2077CrossRefGoogle Scholar
  6. 6.
    Dyson DJ, Holmes B (1970) J Iron Steel Inst 208:469Google Scholar
  7. 7.
    Bhadeshia HKDH, Davis SA, Vitek JM, Reed RW (1991) Mater Sci Technol 7:686CrossRefGoogle Scholar
  8. 8.
    Garcia-Mateo C, Caballero FG (2005) Mater Trans JIM 46:1839CrossRefGoogle Scholar
  9. 9.
    MTDATA (2004) Phase Diagram Calculation Software. National Physical Laboratory, Teddington, UKGoogle Scholar
  10. 10.
    Bhadeshia HKDH, Edmonds DV (1983) Metal Sci 17:411CrossRefGoogle Scholar
  11. 11.
    Caballero FG, García-Mateo C, Santofimia MJ, Miller MK, Garcia de Andres C (2009) Acta Mater 57:8CrossRefGoogle Scholar
  12. 12.
    Bhadeshia HKDH, Waugh AR (1982) Acta Metall 30:775CrossRefGoogle Scholar
  13. 13.
    Stone HJ, Peet MJ, Bhadeshia HKDH, Withers PJ, Babu SS, Specht ED (2008) Proc R Soc A 464:1009CrossRefGoogle Scholar
  14. 14.
    Caballero FG, Miller MK, Babu SS, Garcia-Mateo C (2007) Acta Mater 55:381CrossRefGoogle Scholar
  15. 15.
    Garcia-Mateo C, Caballero FG (2007) Int J Mater Res 98:137CrossRefGoogle Scholar
  16. 16.
    Garcia-Mateo C, Caballero FG (2005) ISIJ Int 45:1736CrossRefGoogle Scholar
  17. 17.
    Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P (2001) Mater Sci Technol 17:517CrossRefGoogle Scholar
  18. 18.
    Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2005) ISIJ Int 43:1821CrossRefGoogle Scholar
  19. 19.
    Jaques PJ, Girault E, Harlet Ph, Delannay F (2001) ISIJ Int 41:1061CrossRefGoogle Scholar
  20. 20.
    Itami A, Takahashi M, Ushioda K (1995) ISIJ Int 35:1121CrossRefGoogle Scholar
  21. 21.
    Sugimoto K, Kobayashi M, Hashimoto S (1992) Metall Trans 23A:3085CrossRefGoogle Scholar
  22. 22.
    Yu HY, Kai GY, De Jian M (2006) Mater Sci Eng A 441:331CrossRefGoogle Scholar
  23. 23.
    Jaques PJ, Girault E, Mertens A, Verlinden B, Delanny F (2001) ISIJ Int 41:1068CrossRefGoogle Scholar
  24. 24.
    Nohara K, Ono Y, Ohashi N (1977) J ISIJ 63:212Google Scholar
  25. 25.
    Sherif MY, Garcia-Mateo C, Sourmail T, Bhadeshia HKDH (2004) Mater Sci Technol 20:319CrossRefGoogle Scholar
  26. 26.
    Sherif MY (2006) Characterisation and development of nanostructured, ultrahigh strength, and ductile bainitic Steels. PhD Thesis, University of Cambridge. Available online at
  27. 27.
    Chatterjee S, Bhadeshia HKDH (2007) Mater Sci Technol 23:1101CrossRefGoogle Scholar
  28. 28.
    Bhadeshia HKDH, Edmonds DV (1979) Metall Trans A 10:895CrossRefGoogle Scholar
  29. 29.
    Bhadeshia HKDH (2002) ISIJ Int 42:1059CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Garcia-Mateo
    • 1
    Email author
  • F. G. Caballero
    • 1
  • J. Chao
    • 1
  • C. Capdevila
    • 1
  • C. Garcia de Andres
    • 1
  1. 1.MATERALIA Research Group, Department of Physical MetallurgyCentro Nacional de Investigaciones Metalurgicas (CENIM-CSIC)MadridSpain

Personalised recommendations