Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4577–4586 | Cite as

Comparison about effects of Ce, Sn and Gd additions on as-cast microstructure and mechanical properties of Mg–3.8Zn–2.2Ca (wt%) magnesium alloy

  • Mingbo YangEmail author
  • Liang Cheng
  • Fusheng Pan
Article

Abstract

In this paper, the effects of Ce, Sn and Gd additions on the as-cast microstructure and mechanical properties of Mg–3.8Zn–2.2Ca (wt%) magnesium alloy are investigated and compared. The results indicate that adding 1.0 wt% Ce, 1.0 wt% Sn or 1.0 wt% Gd can effectively refine the grains of the Mg–3.8Zn–2.2Ca alloy, and the refinement efficiency of Ce addition is relatively high, followed by the additions of Sn and Gd, respectively. Accordingly, the tensile properties of the as-cast Mg–3.8Zn–2.2Ca alloy are improved by the additions of Ce, Sn or Gd, with the improvement resulting from the Ce addition being best and followed by the additions of Sn and Gd, respectively. In addition, adding 1.0 wt% Ce, 1.0 wt% Sn or 1.0 wt% Gd to the Mg–3.8Zn–2.2Ca alloy can also improve the creep properties of the as-cast alloy. Among the Ce-, Sn- and Gd-containing alloys, the creep properties of the Sn- and Gd-containing alloys are similar but lower than that of the Ce-containing alloy.

Keywords

Magnesium Alloy Ultimate Tensile Strength Creep Property Experimental Alloy Refinement Efficiency 

Notes

Acknowledgements

The present work was supported by the National Natural Science Funds in China (No. 50725413), the Major State Basic Research Development Program of China (973) (No. 2007CB613704), the Natural Science Foundation Project of CQ CSTC (No. 2007BB4400), and the Chongqing Education Commission in China (KJ090628).

References

  1. 1.
    Luo A, Pekguleryuz MO (1994) J Mater Sci 29:5259. doi: https://doi.org/10.1007/BF01171534 CrossRefGoogle Scholar
  2. 2.
    Bamberger M, Dehm G (2008) Annu Rev Mater Res 38:505CrossRefGoogle Scholar
  3. 3.
    Gorny A, Bamberger M, Katsman A (2007) J Mater Sci 42:10014. doi: https://doi.org/10.1007/s10853-007-1998-7 CrossRefGoogle Scholar
  4. 4.
    Levi G, Avraham S, Zilberov A, Bamberger M (2006) Acta Mater 54:523CrossRefGoogle Scholar
  5. 5.
    Bettles CJ, Gibson MA, Venkatesan K (2004) Scr Mater 51:193CrossRefGoogle Scholar
  6. 6.
    Nie JF, Muddle BC (1997) Scr Mater 37:1475CrossRefGoogle Scholar
  7. 7.
    Chang S-Y, Fukatsu A, Tezuka H, Kamio A (1999) Mater Trans 40:546CrossRefGoogle Scholar
  8. 8.
    Oh JC, Ohkubo T, Mukai T, Hono K (2005) Scr Mater 53:675CrossRefGoogle Scholar
  9. 9.
    Horie T, Iwahori H, Awano Y, Matsui A (1999) J Jpn Inst Light Met 49:272CrossRefGoogle Scholar
  10. 10.
    Mendis CL, Oh-ishi K, Hono K (2007) Scr Mater 57:485CrossRefGoogle Scholar
  11. 11.
    Gao X, Zhu SM, Muddle BC, Nie JF (2005) Scr Mater 53:1321CrossRefGoogle Scholar
  12. 12.
    Somekawa H, Mukai T (2007) Mater Sci Eng A 459:366CrossRefGoogle Scholar
  13. 13.
    Ortega Y, Leguey T, Pareja R (2008) Mater Lett 62:3893CrossRefGoogle Scholar
  14. 14.
    Zhou T, Chen D, Chen ZH, Chen JH (2009) J Alloys Compd 475:L1CrossRefGoogle Scholar
  15. 15.
    Chen ZH, Zhou T, Chen D, Yan HG, Chen JH (2008) Mater Sci Technol 24:848CrossRefGoogle Scholar
  16. 16.
    Jardim PM, Solorzano G, Vander Sande JB (2004) Mater Sci Eng A 381:196CrossRefGoogle Scholar
  17. 17.
    Park WW, You BS, Moon BG, Park JG, Yang SC (2001) Met Mater Int 7:9CrossRefGoogle Scholar
  18. 18.
    Yang MB, Pan FS, Cheng L, Shen J (2009) Mater Sci Eng A 512:132CrossRefGoogle Scholar
  19. 19.
    Chen JH, Chen ZH, Yan HG, Zhang FQ, Liao K (2008) J Alloys Compd 461:209CrossRefGoogle Scholar
  20. 20.
    He SM, Peng LM, Zeng XQ, Ding WJ, Zhu YP (2006) Mater Sci Eng A 433:175CrossRefGoogle Scholar
  21. 21.
    Zhou HT, Zeng XQ, Liu LF, Zhang Y, Zhu YP, Ding WJ (2004) J Mater Sci 39:7061. doi: https://doi.org/10.1023/B:JMSC.0000047551.04037.fe CrossRefGoogle Scholar
  22. 22.
    Jun JH, Kim JM, Park BK, Kim KT, Jung WJ (2005) J Mater Sci 40:2659. doi: https://doi.org/10.1007/s10853-005-2099-0 CrossRefGoogle Scholar
  23. 23.
    Mishra RK, Gupta AK, Rao PR, Sachdev AK, Kumard AM, Luo AA (2008) Scr Mater 59:562CrossRefGoogle Scholar
  24. 24.
    Moreno IP, Nandy TK, Jones JW, Allison JE, Pollock TM (2001) Scr Mater 45:1423CrossRefGoogle Scholar
  25. 25.
    Qian Ma, Das A (2006) Scr Mater 54:881CrossRefGoogle Scholar
  26. 26.
    Brubaker CO, Liu Z-K (2004) J Alloys Compd 370:114CrossRefGoogle Scholar
  27. 27.
    Zhang EL, Yang L (2008) Mater Sci Eng A 497:111CrossRefGoogle Scholar
  28. 28.
    Hort N, Huang Y, Abuleil T, Maier P, Kainer KU (2006) Adv Eng Mater 8:359CrossRefGoogle Scholar
  29. 29.
    Kim BH, Jeon JJ, Park KC, Park BG, Park YH, Park IM (2008) Int J Cast Met Res 21:186CrossRefGoogle Scholar
  30. 30.
    Zhu SM, Mordike BL, Nie JF (2008) Mater Sci Eng A 483–484:583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Materials Science and Engineering CollegeChongqing University of TechnologyChongqingChina
  2. 2.National Engineering Research Center for Magnesium AlloysChongqing UniversityChongqingChina

Personalised recommendations