Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6571–6575 | Cite as

Influence of chemical vapour infiltration conditions of acetylene on the structural and textural properties of EMT-type zeolite nanocasted carbon replica

  • Claire Ducrot-Boisgontier
  • Julien Parmentier
  • Luc Delmotte
  • Joël Patarin
Mesostructured Materials

Abstract

Ordered microporous carbons were synthesized by the nanocasting process using EMC-2 zeolite (EMT structure type) and acetylene as a mould and a carbon precursor, respectively. In this study, the conditions of the synthesis methods for preparing the ordered microporous carbons were examined. Temperature and duration parameters for the chemical vapour infiltration were optimized to yield an ordered carbon replica that displays up the three XRD diffraction peaks. This faithful replica exhibits also a high micropore volume (1.3–1.4 cm3/g) with mainly supermicroporosity, a high specific surface area (>2900 m2/g) and nearly no mesoporosity. The pore size distribution calculated with NLDFT method from nitrogen physisorption data shows three maxima at 0.6, 1.0 and 1.8 nm diameters. The second is due to the zeolite wall dissolution. The first and the third are attributed to different types of default. Compared to the classical two-step procedure, the direct infiltration with acetylene appears an interesting route for the preparation of ordered microporous carbon replicas with high micropore volume.

Keywords

Zeolite Chemical Vapour Deposition Micropore Volume Furfuryl Alcohol Carbon Replica 

References

  1. 1.
    Bhatia SK, Myers AL (2006) Langmuir 22:1688CrossRefGoogle Scholar
  2. 2.
    Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730CrossRefGoogle Scholar
  3. 3.
    Yang ZX, Xia YD, Sun XZ, Mokaya R (2006) J Phys Chem B 110:18424CrossRefGoogle Scholar
  4. 4.
    Pacula A, Mokaya R (2008) J Phys Chem C 112:2764CrossRefGoogle Scholar
  5. 5.
    Kyotani T, Nagai T, Inoue S, Tomita A (1997) Chem Mater 9:609CrossRefGoogle Scholar
  6. 6.
    Gaslain FOM, Parmentier J, Valtchev VP, Patarin J (2006) Chem Commun: 991Google Scholar
  7. 7.
    Ma Z, Kyotani T, Tomita A (2002) Carbon 40:2367CrossRefGoogle Scholar
  8. 8.
    Hou PX, Yamazaki T, Orikasa H, Kyotani T (2005) Carbon 43:2624CrossRefGoogle Scholar
  9. 9.
    Delprato F, Delmotte L, Guth JL, Huve L (1990) Zeolites 10:546CrossRefGoogle Scholar
  10. 10.
    Ma Z, Kyotani T, Liu Z, Terasaki O, Tomita A (2001) Chem Mater 13:4413CrossRefGoogle Scholar
  11. 11.
    Kaneko K, Ishii C (1992) Colloids Surf 67:203CrossRefGoogle Scholar
  12. 12.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  13. 13.
    Fuertes AB, Nevskaia DM (2003) Microporous Mesoporous Mater 62:177CrossRefGoogle Scholar
  14. 14.
    Roussel T, Didion A, Pellenq RJM, Gadiou R, Bichara C, Vix-Guterl C (2007) J Phys Chem C 111:15863CrossRefGoogle Scholar
  15. 15.
    Nishihara H, Yang QH, Hou PX, Unno M, Yamauchi S, Saito R, Parades JI, Martinez-Alonso A, Tascόn JMD, Sato Y, Terauchi M, Kyotani T (2009) Carbon 47:1220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Claire Ducrot-Boisgontier
    • 1
  • Julien Parmentier
    • 1
  • Luc Delmotte
    • 1
  • Joël Patarin
    • 1
  1. 1.Institut de Science des Matériaux de Mulhouse – IS2M – LRC CNRS 7228Université de Haute-AlsaceMulhouse CedexFrance

Personalised recommendations