Journal of Materials Science

, Volume 44, Issue 20, pp 5441–5451 | Cite as

Negative thermal expansion: a review

  • W. Miller
  • C. W. SmithEmail author
  • D. S. Mackenzie
  • K. E. Evans


Most materials demonstrate an expansion upon heating, however a few are known to contract, i.e. exhibit a negative coefficient of thermal expansivity (NTE). This naturally occurring phenomenon has been shown to occur in a range of solids including complex metal oxides, polymers and zeolites, and opens the door to composites with a coefficient of thermal expansion (CTE) of zero. The state of the art in NTE solids is reviewed, and understanding of the driving mechanisms of the effect is considered along with experimental and theoretical evidence. The various categories of solids with NTE are explored, and experimental methods for their experimental characterisation and applications for such solids are proposed. An abstraction for an underlying mechanism for NTE at the supramolecular level and its applicability at the molecular level is discussed.


Zeolite Negative Thermal Expansion Thermal Expansion Behaviour Displacive Phase Transition NASICON Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chang R (2000) Physical chemistry for the chemical and biological sciences, 3rd edn. University Science Books, SausalitoGoogle Scholar
  2. 2.
    Evans JSO, David WIF, Sleight AW (1999) Acta Crystallogr B 55:333PubMedCrossRefGoogle Scholar
  3. 3.
    Evans JSO, Hu Z, Jorgensen JD, Argyriou DN, Short S, Sleight AW (1997) Science 275:61PubMedCrossRefGoogle Scholar
  4. 4.
    Mary TA, Evans JSO, Vogt T, Sleight AW (1996) Science 272:90CrossRefADSGoogle Scholar
  5. 5.
    Attfield MP, Sleight AW (1998) Chem Mater 10:2013CrossRefGoogle Scholar
  6. 6.
    Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) J Mater Chem 11:212CrossRefGoogle Scholar
  7. 7.
    Tao JZ, Sleight AW (2003) J Phys Chem Solids 64:1473CrossRefADSGoogle Scholar
  8. 8.
    Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG (2008) Science 319:794PubMedCrossRefADSGoogle Scholar
  9. 9.
    Baughman RH, Turi EA (1973) J Polym Sci B 11(12):2453Google Scholar
  10. 10.
    Baughman RH (1973) J Chem Phys 58(7):2976CrossRefADSGoogle Scholar
  11. 11.
    Baughman RH, Galvado DS (1995) Chem Phys Lett 240(1–3):180CrossRefADSGoogle Scholar
  12. 12.
    Rupnowski P, Gentz M, Sutter JK, Kumosa M (2005) Compos Part A 36:327CrossRefGoogle Scholar
  13. 13.
    Yamanaka A, Kashima T, Tsutsumi M (2007) J Compos Mater 41(2):165CrossRefGoogle Scholar
  14. 14.
    Sleight AW (1995) Endeavor 19(2):64CrossRefGoogle Scholar
  15. 15.
    Ernst C, Broholm G, Kowach R, Ramirez AP (1998) Nature 396(12):147ADSGoogle Scholar
  16. 16.
    Dove MT (1997) Am Miner 82:215Google Scholar
  17. 17.
    Welche PRL, Heine V, Dove MT (1998) Phys Chem Miner 26:63CrossRefADSGoogle Scholar
  18. 18.
    Evans JSO, David WIF, Sleight AW (1999) Acta Crystallogr B 55:333CrossRefGoogle Scholar
  19. 19.
    Evans JSO (1999) J Chem Soc Dalton Trans 331:7Google Scholar
  20. 20.
    Mittal R, Chaplot SL (2000) Solid State Commun 115:319CrossRefADSGoogle Scholar
  21. 21.
    Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) J Phys Condens Matter 17:217CrossRefADSGoogle Scholar
  22. 22.
    Hammonds KD, Bosenick A, Dove MT, Heine V (1998) Am Miner 83:476Google Scholar
  23. 23.
    Pryde AKA, Hammonds KD, Dove MT, Heine V, Gale JD, Warren MC (1996) J Phys Condens Matter 8:10973CrossRefADSGoogle Scholar
  24. 24.
    Forster PM, Yokochi A, Sleight AW (1998) J Solid State Chem 140:157CrossRefADSGoogle Scholar
  25. 25.
    Woodcock DA, Lightfoot P, Ritter C (2000) J Solid State Chem 149:92CrossRefADSGoogle Scholar
  26. 26.
    Woodcock DA, Lightfoot P, Smith RI (1999) J Mater Chem 9:2631CrossRefGoogle Scholar
  27. 27.
    Hammonds KD, Heine V, Dove M (1998) J Phys Chem B 102:1759CrossRefGoogle Scholar
  28. 28.
    Hammonds KD, Deng H, Heine V, Dove MT (1997) Phys Rev Lett 78(19):3701CrossRefADSGoogle Scholar
  29. 29.
    Sanchez-Vallea C, Sinogeikin SV, Lethbridge ZAD, Walton RI, Smith CW, Evans KE, Bass JD (2005) J Appl Phys 98:053508CrossRefADSGoogle Scholar
  30. 30.
    Bull I, Lightfoot P, Villaescusa LA, Bull LM, Glover RKB, Evans JSO, Morris RE (2003) J Am Chem Soc 125:4342PubMedCrossRefGoogle Scholar
  31. 31.
    Evans JSO, Mary TA (2000) Int J Inorg Mater 2:143CrossRefGoogle Scholar
  32. 32.
    Tyagi AK, Achary SN, Mathews MD (2002) J Alloys Compd 339:207CrossRefGoogle Scholar
  33. 33.
    Schneider T, Srinivasam G, Enz C (1972) Phys Rev A 5(3):476CrossRefGoogle Scholar
  34. 34.
    Cochran W (1973) The dynamics of atoms in crystals. Edward Arnolds, LondonGoogle Scholar
  35. 35.
    Khosrovani N, Sleight AW (1997) J Solid State Chem 132:355CrossRefADSGoogle Scholar
  36. 36.
    Evans JSO, Mary TA, Sleight AW (1998) J Solid State Chem 137:148CrossRefADSGoogle Scholar
  37. 37.
    Miller W, Mackenzie DS, Smith CW, Evans KE (2008) Mech Mater 40:351CrossRefGoogle Scholar
  38. 38.
    Giddy P, Dove MT, Pawley GS, Heine V (1993) Acta Crystallogr A 49:697CrossRefGoogle Scholar
  39. 39.
    Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA (1999) J Mater Chem 9:349CrossRefGoogle Scholar
  40. 40.
    Heine V, Welche PRL, Dove MT (1999) J Am Ceram Soc 82(7):1793CrossRefGoogle Scholar
  41. 41.
    Phillips JC (1979) J Non-Cryst Solids 34:153CrossRefADSGoogle Scholar
  42. 42.
    Khosrovani N, Sleight AW (1996) J Solid State Synth 121:2CrossRefADSGoogle Scholar
  43. 43.
    Reisner BA, Lee Y, Hanson JC, Jones GA, Parise JB, Corbin DR, Toby BH, Freitag A, Larese JZ, Kahlenberg V (2000) Chem Commun 222:1Google Scholar
  44. 44.
    Wu Y, Kobayashi A, Halder G, Peterson V, Chapman K (2008) Angew Chem Int Ed 47:8929CrossRefGoogle Scholar
  45. 45.
    Woodcock DA, Lightfoot P (1999) J Mater Chem 9:2907CrossRefGoogle Scholar
  46. 46.
    Kameswari U, Sleight AW, Evans JSO (2000) Int J Inorg Mater 2:333CrossRefGoogle Scholar
  47. 47.
    Closmann C, Sleight AW (1998) J Solid State Chem 139:424CrossRefADSGoogle Scholar
  48. 48.
    Weller MT (2001) Inorganic materials chemistry: Oxford chemistry primers. Oxford University Press, Oxford UniversityGoogle Scholar
  49. 49.
    Martinez-Inesta MM, Lobo RF (2005) J Phys Chem B 109(19):9389PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson MR, Kearley GJ, Buttner HG (1999) AIP Conf Proc 479:28Google Scholar
  51. 51.
    Reisner BA, Lee Y, Hanson JC, Jones GA, Parise JB, Corbin DR, Toby BH, Freitag A, Larese JZ, Kahlenberg V (2000) Chem Commun 22:2221CrossRefGoogle Scholar
  52. 52.
    Marinkovic BA, Jardim PM, Saavedra A, Lau LY, Baehtz C, de Avillez RR, Rizzo F (2004) Micropor Mesopor Mater 71(1):117CrossRefGoogle Scholar
  53. 53.
    Jardim PM, Marinkovic BA, Saavedra A, Lau LY, Baehtz C, Rizzo F (2004) Micropor Mesopor Mater 76(1):23CrossRefGoogle Scholar
  54. 54.
    Sen S, Wusirika RR, Youngman RE (2006) Micropor Mesopor Mater 87:217CrossRefGoogle Scholar
  55. 55.
    Yamahara K, Okazaki K, Kawamura K (1995) Catal Today 23:397CrossRefGoogle Scholar
  56. 56.
    Tschaufeser P, Parker SC (1995) J Phys Chem 99(26):10609CrossRefGoogle Scholar
  57. 57.
    Bieniok A, Hammonds KD (1998) Micropor Mesopor Mater 25(1):193CrossRefGoogle Scholar
  58. 58.
    Ramirez AP, Kowach GR (1998) Phys Rev Lett 80(22):4903CrossRefADSGoogle Scholar
  59. 59.
    Miller W, Smith CW, Burgess AN, Dooling PJ, Evans KE (2008) Phys Status Solidi B 245(3):552CrossRefGoogle Scholar
  60. 60.
    Allen S, Evans JSO (2003) Phys Rev B 68:134101CrossRefADSGoogle Scholar
  61. 61.
    Sebastian L, Sumithra S, Manimama J, Umarji AM, Gopalakrishnan J (2003) Mater Sci Eng B103:289CrossRefGoogle Scholar
  62. 62.
    Amos TG, Yokochi A, Sleight AW (1998) J Solid State Chem 14:303CrossRefGoogle Scholar
  63. 63.
    Sleight AW (1998) Inorg Chem 37:2854CrossRefGoogle Scholar
  64. 64.
    Liu Y, Withers RL, Noren L (2003) Solid State Sci 5:427CrossRefADSGoogle Scholar
  65. 65.
    Woodcock DA, Lightfoot P, Ritter C (1998) Chem Commun 1:107CrossRefGoogle Scholar
  66. 66.
    Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S, Achiba Y, Nishibori E, Takata M, Sakata M, Fujiwara A, Suematsu H (2001) Phys Rev B 64:241402CrossRefADSGoogle Scholar
  67. 67.
    Tomanek D (2005) J Phys Condens Matter 17:R413CrossRefADSGoogle Scholar
  68. 68.
    Kwon YK, Berber S, Tomanek D (2004) Phys Rev Lett 92(1):015901PubMedCrossRefADSGoogle Scholar
  69. 69.
    Brown S, Cao J, Musfeldt JL, Dragoe N, Cimpoesu F, Ito S, Takagi H, Cross RJ (2006) Phys Rev B 73:125446CrossRefADSGoogle Scholar
  70. 70.
    Dubbeldam D, Walton KS, Ellis DE, Snurr RQ (2007) Angew Chem Int Ed 46(24):4496CrossRefGoogle Scholar
  71. 71.
    Sleight AW (1998) Curr Opin Solid State Mater Sci 3:128CrossRefGoogle Scholar
  72. 72.
    Versulius A, Douglas WH, Sakaguchi RL (1996) Dent Mater 12:290CrossRefGoogle Scholar
  73. 73.
    Tran KD, Groshens TJ, Nelson JG (2001) Mater Sci Eng A303:234Google Scholar
  74. 74.
    Imanaka N, Hiraiwa M, Adachi G, Dabkowska H, Dabkowski A (2000) J Cryst Growth 220:176CrossRefADSGoogle Scholar
  75. 75.
    Clegg JW, Kelly A (2002) Adv Eng Mater 4(6):388CrossRefGoogle Scholar
  76. 76.
    Couves JW, Jones RH, Parker SC, Tschaufeser P, Catlow CRA (1993) J Phys Condens Matter 5:L329CrossRefADSGoogle Scholar
  77. 77.
    Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580CrossRefADSGoogle Scholar
  78. 78.
    Landert M, Kelly A, Stearn RJ (2004) J Mater Sci 39:3563. doi: 10.1023/B:JMSC.0000030707.91634.5f CrossRefADSGoogle Scholar
  79. 79.
    Ito T, Suganuma T, Wakashima K (1999) J Mater Sci Lett 18:1363CrossRefGoogle Scholar
  80. 80.
    Lim T (2005) J Mater Sci 40:3275. doi: 10.1007/s10853-005-2700-6 CrossRefADSGoogle Scholar
  81. 81.
    Kelly A, McCartney LN, Clegg WJ, Stearn RJ (2005) Compos Sci Technol 65:47CrossRefGoogle Scholar
  82. 82.
    Kelly A, Stearn RJ, McCartney LN (2006) Compos Sci Technol 66:154CrossRefGoogle Scholar
  83. 83.
    Aboudi J, Gilat R (2005) Int J Solids Struct 42:4372zbMATHCrossRefGoogle Scholar
  84. 84.
    Qi J, Halloran JW (2004) J Mater Sci 39:4113. doi: 10.1023/B:JMSC.0000033391.65327.9d CrossRefADSGoogle Scholar
  85. 85.
    Sigmund O, Torquato S (1996) Appl Phys Lett 69:21CrossRefGoogle Scholar
  86. 86.
    Lakes R (1996) J Mater Sci Lett 15:475Google Scholar
  87. 87.
    Rosen BW, Hashin Z (1970) Int J Eng Sci 8:157CrossRefGoogle Scholar
  88. 88.
    Shih-Fang C, McKinney TX (2005) Low coefficient of thermal expansion semiconductor packaging materials. US Patent US2005/0110168 A1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. Miller
    • 1
  • C. W. Smith
    • 1
    Email author
  • D. S. Mackenzie
    • 1
  • K. E. Evans
    • 1
  1. 1.School of Engineering, Computing and MathematicsUniversity of ExeterExeterUK

Personalised recommendations