Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4539–4545 | Cite as

A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates

  • Yingkui Yang
  • Shengqiang Qiu
  • Wei Cui
  • Qiang Zhao
  • Xinjian Cheng
  • Robert Kwok Yiu LiEmail author
  • Xiaolin XieEmail author
  • Yiu-Wing Mai
Article

Abstract

Silica-coated multiwalled carbon nanotubes (MWCNTs) have been prepared by the sol–gel polymerization of tetraethoxysilane (TEOS) in the presence of the acid-oxidized MWCNTs at room temperature, followed by oxidizing the MWCNTs templates at high temperature in air to produce hollow silica nanotubes. The thickness and architectures of silica shell were well controlled by rationally adjusting the concentration of TEOS, and by adding cationic surfactant as a structure-directing agent. These results also give a clear answer to prove the fact that the structures of spherical silica particles can be fully “copied” to the coating shell and the wall of silica nanotubes when prepared by the same method as the synthesis of silica particles in the presence of templates.

Keywords

Silica Particle Silica Shell Silica Coating Pristine MWCNTs CTAB Micelle 

Notes

Acknowledgements

This study was supported by a grant from the City University of Hong Kong (Project No. 7002093). YKY is grateful for the financial support from the National Natural Science Foundation of China (20804014). XLX acknowledges the financial support from the New Century Excellent Talents in Universities of China (NCET-05-0640). We thank Mr. Hung TF for his valuable assistance with the TEM measurement results. We also thank the reviewers for their valuable comments and suggestions regarding the revision.

References

  1. 1.
    Goldberger J, Fan R, Yang P (2006) Acc Chem Res 39:239CrossRefGoogle Scholar
  2. 2.
    Suhr J, Koratkar NA (2008) J Mater Sci 43:4370. doi: https://doi.org/10.1007/s10853-007-2440-x CrossRefGoogle Scholar
  3. 3.
    Oliphant CJ, Arendse CJ, Malgas GF, Motaung DE, Muller TFG, Halindintwali S, Julies BA, Knoesen D (2009) J Mater Sci 44:2610. doi: https://doi.org/10.1007/s10853-009-3341-y CrossRefGoogle Scholar
  4. 4.
    Wang B, Yang YH, Li LJ, Chen Y (2009) J Mater Sci 44:3285. doi: https://doi.org/10.1007/s10853-009-3444-5 CrossRefGoogle Scholar
  5. 5.
    Zhao YY, Yang J, Frost RL, Kristóf K, Horváth E (2009) J Mater Sci 44:3662. doi: https://doi.org/10.1007/s10853-009-3489-5 CrossRefGoogle Scholar
  6. 6.
    Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin CR (2002) J Am Chem Soc 124:11864CrossRefGoogle Scholar
  7. 7.
    Fan R, Karnik R, Yue M, Le DY, Majumdar A, Yang P (2005) Nano Lett 5:1633CrossRefGoogle Scholar
  8. 8.
    Chen S, Wu G, Sha M, Huang S (2007) J Am Chem Soc 129:2416CrossRefGoogle Scholar
  9. 9.
    Lu CS, Mai YW (2008) J Mater Sci 43:6012. doi: https://doi.org/10.1007/s10853-008-2917-2 CrossRefGoogle Scholar
  10. 10.
    Song R, Yang DB, He LH (2008) J Mater Sci 43:1205. doi: https://doi.org/10.1007/s10853-007-2277-3 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Wang SR (2008) J Mater Sci 43:5837. doi: https://doi.org/10.1007/s10853-008-2847-z CrossRefGoogle Scholar
  13. 13.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105CrossRefGoogle Scholar
  14. 14.
    Yang YK, Xie XL, Wu JG, Mai YW (2006) J Polym Sci Part A Polym Chem 44:3869CrossRefGoogle Scholar
  15. 15.
    Yang YK, Xie XL, Wu JG, Yang ZF, Wang XT, Mai YW (2006) Macromol Rapid Commun 27:1695CrossRefGoogle Scholar
  16. 16.
    Yang YK, Xie XL, Yang ZF, Wang XT, Cui W, Yang JY, Mai YW (2007) Macromolecules 40:5858CrossRefGoogle Scholar
  17. 17.
    Yang YK, Wang XT, Liu L, Xie XL, Yang ZF, Li RKY, Mai YW (2007) J Phys Chem C 111:11231CrossRefGoogle Scholar
  18. 18.
    Chang QF, Zhao K, Chen X, Li MQ, Liu JH (2008) J Mater Sci 43:5861. doi: https://doi.org/10.1007/s10853-008-2827-3 CrossRefGoogle Scholar
  19. 19.
    Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Science 293:76CrossRefGoogle Scholar
  20. 20.
    Olek M, Kempa K, Jurga S, Giersig M (2005) Langmuir 21:3146CrossRefGoogle Scholar
  21. 21.
    Ning J, Zhang J, Pan Y, Guo J (2003) J Mater Sci Lett 22:1019CrossRefGoogle Scholar
  22. 22.
    Zhan H, Zheng C, Chen W, Wang M (2005) Chem Phys Lett 411:373CrossRefGoogle Scholar
  23. 23.
    Kempa T, Carnahan D, Olek M, Correa M, Giersig M, Cross M (2005) J Appl Phys 98:034310CrossRefGoogle Scholar
  24. 24.
    Whitsitt EA, Barron AR (2003) Nano Lett 3:775CrossRefGoogle Scholar
  25. 25.
    Kanungo M, Isaacs HS, Wong SS (2007) J Phys Chem C 111:17730CrossRefGoogle Scholar
  26. 26.
    Liu Y, Tang J, Chen X, Wang R, Pang GKH, Zhang Y, Xin JH (2006) Carbon 44:165CrossRefGoogle Scholar
  27. 27.
    Llusar M, Sanchez C (2008) Chem Mater 20:782CrossRefGoogle Scholar
  28. 28.
    Hillebrenner H, Buyukserin F, Kang M, Mota MO, Steward JD, Martin CR (2006) J Am Chem Soc 128:4236CrossRefGoogle Scholar
  29. 29.
    Jang J, Yoon H (2004) Adv Mater 16:799CrossRefGoogle Scholar
  30. 30.
    Fan R, Wu Y, Li D, Yue M, Majumdar A, Yang P (2003) J Am Chem Soc 125:5254CrossRefGoogle Scholar
  31. 31.
    Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Acc Chem Res 40:846CrossRefGoogle Scholar
  32. 32.
    Chae WS, Braum PV (2007) Chem Mater 19:5593CrossRefGoogle Scholar
  33. 33.
    Kim JW, Kim LU, Kim CK (2007) Biomacromolecules 8:215CrossRefGoogle Scholar
  34. 34.
    Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao CNR (1997) J Mater Res 12:604CrossRefGoogle Scholar
  35. 35.
    Hench LL, West JK (1990) Chem Rev 90:33CrossRefGoogle Scholar
  36. 36.
    Bottini M, Tautz L, Huynh H, Monosov E, Bottini N, Dawson MI, Bellucci S, Mustelin T (2005) Chem Commun 758Google Scholar
  37. 37.
    Li X, Liu Y, Fu L, Cao L, Wei D, Wang Y (2006) Adv Funct Mater 16:2431CrossRefGoogle Scholar
  38. 38.
    Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Compos Sci Technol 67:1813CrossRefGoogle Scholar
  39. 39.
    Gasparac R, Kohli P, Mota MO, Trofin L, Martin CR (2004) Nano Lett 4:513CrossRefGoogle Scholar
  40. 40.
    Yoon SB, Sohn K, Kim JY, Yu JS, Hyeon T (2002) Adv Mater 14:19CrossRefGoogle Scholar
  41. 41.
    Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS (2007) J Mater Chem 17:1758CrossRefGoogle Scholar
  42. 42.
    Chernozatonskii LA, Artyukhpv VI, Sorokin PB (2006) Phys Rev B 74:045402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yingkui Yang
    • 1
    • 2
  • Shengqiang Qiu
    • 2
  • Wei Cui
    • 3
  • Qiang Zhao
    • 1
  • Xinjian Cheng
    • 1
  • Robert Kwok Yiu Li
    • 1
    Email author
  • Xiaolin Xie
    • 3
    Email author
  • Yiu-Wing Mai
    • 4
  1. 1.Department of Physics and Materials ScienceCity University of Hong KongKowloonPeople’s Republic of China
  2. 2.Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, and Faculty of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China
  3. 3.Department of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  4. 4.Center for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic Engineering, J07University of SydneySydneyAustralia

Personalised recommendations