Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4531–4538 | Cite as

Nucleation and growth mechanism of apatite on a bioactive and degradable ceramic/polymer composite with a thick polymer layer

  • Jeong-Cheol Lee
  • Sung Baek Cho
  • Seung Jin Lee
  • Sang-Hoon RheeEmail author
Article

Abstract

Nucleation and growth mechanism of apatite on a bioactive and degradable PLLA/SiO2–CaO composite with a thick PLLA surface layer were investigated compared to that on a bioactive but non-degradable polyurethane (PU)/SiO2–CaO composite with a thick PU surface layer. The bioactive SiO2–CaO particles were made by a sol–gel method from tetraethyl orthosilicate and calcium nitrate tetrahydrate under acidic condition followed by heat treatment at 600 °C for 2 h. The PLLA/SiO2–CaO and PU/SiO2–CaO composites were then prepared by a solvent casting method which resulted in thick PLLA and PU surface layers, respectively, due to precipitation of SiO2–CaO particles during the casting process. Two composites were exposed to SBF for 1 week and this exposure led to form uniform and complete apatite coating layer on the PLLA/SiO2–CaO composite but not on the PU/SiO2-CaO composite. These results were interpreted in terms of the degradability of the polymers. A practical implication of the results is that a post-surface grinding or cutting processes to expose bioactive ceramics to the surface of a composite with a thick biodegradable polymer layer is not required for providing apatite forming ability, which has been considered as one of the pragmatic obstacles for the application as a bone grafting material.

Keywords

Apatite PLLA Surface Crack Bioactive Glass Composite Surface 

Notes

Acknowledgement

This work was supported by the Nano Bio R&D Program (Platform technologies for organ/tissue regeneration (Regenomics), Grant No. M0528010001-06N2801-00110) of the Korea Science & Engineering Foundation.

References

  1. 1.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1972) J Biomed Mater Res Symp 2:117Google Scholar
  2. 2.
    Kokubo T, Shigematsu M, Nagashima Y, Tashiro T, Nakamura T, Yamamuro T, Higashi S (1982) Bull Inst Chem Res, Kyoto Univ 60:260Google Scholar
  3. 3.
    Clupper DC, Hench LL, Mecholsky JJ (2004) J Eur Ceram Soc 24(10–11):2929CrossRefGoogle Scholar
  4. 4.
    Rawlings RD (1993) Clin Mater 14(2):155CrossRefGoogle Scholar
  5. 5.
    Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Biomaterials 2(3):185CrossRefGoogle Scholar
  6. 6.
    Taguchi Y, Yamamuro T, Nakamura T, Nishimura N, Kokubo T, Takahata E, Yoshihara S (1990) J Appl Biomater 1(3):217CrossRefGoogle Scholar
  7. 7.
    Elgendy HM, Norman ME, Keaton AR, Laurencin CT (1993) Biomaterials 14(4):263CrossRefGoogle Scholar
  8. 8.
    Kawanabe K, Tamura J, Yamamuro T, Nakamura T, Kokubo T, Yoshihara S (1993) J Appl Biomater 4(2):135CrossRefGoogle Scholar
  9. 9.
    Jansen JA, de Ruijter JE, Janssen PTM, Paquay YGCJ (1995) Biomaterials 16(11):819CrossRefGoogle Scholar
  10. 10.
    Piattelli A, Franco M, Ferronato G, Santello MT, Martinetti R, Scarano A (1997) Biomaterials 18(8):629CrossRefGoogle Scholar
  11. 11.
    Du FZC C, Zhu XD, de Groot K (1999) J Biomed Mater Res 44(4): 407CrossRefGoogle Scholar
  12. 12.
    Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) J Biomed Mater Res 48(2):108CrossRefGoogle Scholar
  13. 13.
    Peter SJ, Lu L, Kim DJ, Mikos AG (2000) Biomaterials 21(12):1207CrossRefGoogle Scholar
  14. 14.
    Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Tömälä P (2002) Biomaterials 23(7):1579CrossRefGoogle Scholar
  15. 15.
    Rhee S-H, Choi JY, Kim HM (2002) Biomaterials 23(24):4915CrossRefGoogle Scholar
  16. 16.
    Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2002) J Mater Sci: Mater Med 13(11):1015Google Scholar
  17. 17.
    Rhee S-H, Lee Y-K, Lim B-S, Yoo JJ, Kim HJ (2004) Biomacromolecules 5(4):1575CrossRefGoogle Scholar
  18. 18.
    Wei G, Ma PX (2004) Biomaterials 25(19):4749CrossRefGoogle Scholar
  19. 19.
    Kim S-S, Sun Park M, Jeon O, Yong Choi C, Kim B-S (2006) Biomaterials 27(8):1399CrossRefGoogle Scholar
  20. 20.
    Beatty MW, Swartz ML, Moore BK, Phillips RW, Roberts TA (1998) J Biomed Mater Res 40(1):12CrossRefGoogle Scholar
  21. 21.
    Okada Y, Kobayashi M, Neo M, Kokubo T, Nakamura T (2001) J Biomed Mater Res 57A(1):101CrossRefGoogle Scholar
  22. 22.
    Väkiparta M, Forsback A-P, Lassila LV, Jokinen M, Yli-Urpo AUO, Vallittu PK (2005) J Mater Sci: Mater Med 16(9):873Google Scholar
  23. 23.
    Kim IY, Kawachi G, Kikuta K, Cho SB, Kamitakahara M, Ohtsuki C (2008) J Eur Ceram Soc 28(8):1595CrossRefGoogle Scholar
  24. 24.
    Kokubo T, Kushitani H, Sakka S, Kitusgi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar
  25. 25.
    Nam J, Ray S, Okamoto M (2003) Macromolecules 23(2):634Google Scholar
  26. 26.
    Griffith LG (2000) Acta Mater 48:263CrossRefGoogle Scholar
  27. 27.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T (1992) J Mater Sci: Mater Med 3:79Google Scholar
  28. 28.
    Ohtsuki C, Kokubo T, Yamamuro T (1992) J Non-Cryst Solids 143:84CrossRefGoogle Scholar
  29. 29.
    Abe Y, Kokubo T, Yamamuro T (1990) J Mater Sci: Mater Med 1:233Google Scholar
  30. 30.
    Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeong-Cheol Lee
    • 1
  • Sung Baek Cho
    • 2
  • Seung Jin Lee
    • 3
  • Sang-Hoon Rhee
    • 4
    Email author
  1. 1.Department of Dental Biomaterials Science and Dental Research Institute, School of DentistrySeoul National UniversityJongno, SeoulKorea
  2. 2.Mineral & Materials Processing DivisionKorea Institute of Geosciences and Mineral ResourcesYuseong, DaejeonKorea
  3. 3.College of PharmacyEwha Womans UniversitySeodaemun, SeoulKorea
  4. 4.Department of Dental Biomaterials Science, Dental Research Institute, and BK21HLS, School of DentistrySeoul National UniversityJongno, SeoulKorea

Personalised recommendations