Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4499–4502 | Cite as

Application of thermoelectric power measurements to the study of cold rolled austenitic stainless steels

  • C. CapdevilaEmail author
  • T. De Cock
  • F. G. Caballero
  • D. San Martin
  • C. Garcia de Andres
Letter

Introduction

Austenitic stainless steels AISI 304 are widely used steels combining high-corrosion-oxidation resistance, good heat resisting properties and a relative low cost. In recent years, an increasing interest can be noted in the development of new processing routes, for which a detailed study of the microstructural evolution of the cold-rolling material at different annealing temperatures is required. Due to the complex nature of these materials, a technique that allows for a precise monitoring of the grain size evolution at different annealing stages was lacking up to now.

In this context, the aim of this study is to evaluate the utility of the thermoelectric power (TEP) measurements to characterise the recrystallised grain growth of the AISI 304 steels annealed at temperatures between 1000 and 1200 °C and for different rolling reductions. Several authors [1, 2, 3] reported that this technique is very sensitive to both the amount of atoms in solid solutions (i.e. precipitation...

Keywords

Austenitic Stainless Steel Dissolution Process Thermoelectric Power Deformation Degree Annealing Stage 

Notes

Acknowledgements

The authors acknowledge financial support from European Coal and Steel Community (ECSC-7210-PR-368) and from Spanish Ministerio de Educación (MAT2002-18810-E). T. De Cock would also like to express his gratitude to the CSIC for financial support in the form of a PhD research Grant (I3P program). The authors also acknowledge Javier Vara for the experimental support.

References

  1. 1.
    Lavaire N, Massardier V, Merlin J (2004) Scr Mater 50:131CrossRefGoogle Scholar
  2. 2.
    Abe H (1984) Scand J Metall 13:226Google Scholar
  3. 3.
    Brahmi A, Borrelly R (1997) Acta Mater 45:1889CrossRefGoogle Scholar
  4. 4.
    Ferrer JP, De Cock T, Capdevila C, Caballero FG, García de andrés C (2007) Acta Mater 55:2075CrossRefGoogle Scholar
  5. 5.
    Vander Voort G (1999) In: Metallography principles and practice. ASM International, New YorkGoogle Scholar
  6. 6.
    Capdevila C, Caballero FG, Garcia De Andres C (2003) Mater Sci Technol 19:581CrossRefGoogle Scholar
  7. 7.
    Caballero FG, García-Junceda A, Capdevila C, García De Andrés C (2005) Scr Mater 52:501CrossRefGoogle Scholar
  8. 8.
    San Martin D, Rivera Diaz Del Castillo PEJ, Peekstok E, Van Der Zwaag S (2007) Mater Charact 58:455CrossRefGoogle Scholar
  9. 9.
    Luiggi NJ (1998) Metall Mater Trans A 29:2669CrossRefGoogle Scholar
  10. 10.
    Borst K, Pohl M (1990) Steel Res 61:258CrossRefGoogle Scholar
  11. 11.
    Kim SH, Moon HK, Kang T, Lee CS (2003) Mater Sci Eng A356:390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Capdevila
    • 1
    Email author
  • T. De Cock
    • 1
  • F. G. Caballero
    • 1
  • D. San Martin
    • 1
  • C. Garcia de Andres
    • 1
  1. 1.MATERALIA Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain

Personalised recommendations