Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5205–5213 | Cite as

Ferroelectricity in chemical nanostructures: proximal probe characterization and the surface chemical environment

  • Stephen S. Nonnenmann
  • Jonathan E. SpanierEmail author
Ferroelectrics

Abstract

Renewed interest in the evolution of the ferroelectric phase transition temperature TC and the character of ordering of ferroelectric polarizations with finite size and shape is driven in part by several recent developments. An expanding array of pathways for producing nano-structured ferroelectric oxides with control of size, shape, and composition has emerged. Experimental characterization methods originally developed for thin films have been extended to ensemble-free investigations of functional properties of individual nanostructures. Progress in understanding the origin and nature of ferroelectric stability in ultra-thin films and nanostructures is reviewed. Specifically, we discuss evidence for a new surface adsorbate-driven mechanism for stabilizing ferroelectricity in nanostructures owing to a combination of recent proximal probe analysis and model calculation results, along with a new experimental paradigm for investigating and exploiting these effects and effects of finite curvature.

Keywords

BaTiO3 Ferroelectric Polarization Converge Beam Electron Diffraction Piezoresponse Force Microscopy Electrostatic Force Microscopy 

Notes

Acknowledgements

The authors thank H. Park, J. J. Urban, W. S. Yun, L. Ouyang, A. M. Rappe, A. Kolpak and I. Grinberg, E. M. Gallo, O. D. Leaffer, M. T. Coster, R. S. Joseph, C. L. Johnson, and G. R. Soja for collaborative contributions to this study, and S. P. Alpay, A. Morozovska, T. McGuckin and S. L. Moskow for helpful additional technical discussions and support. The authors acknowledge support for this study from the Materials Sciences Division of the U. S. Army Research Office under Award No. W911NF-08-1-0067.

References

  1. 1.
    Scott JF, Fan HJ, Kawasaki S, Banys J, Ivanov M, Krotkus A, Macutkevic J, Blinc R, Laguta VV, Cevc P, Liu JS, Kholkin AL (2008) Nano Lett 8:4404CrossRefGoogle Scholar
  2. 2.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  3. 3.
    Ramesh R, Spaldin NA (2007) Nat Mater 6:21CrossRefGoogle Scholar
  4. 4.
    Huang L, Chen Z, Wilson JD, Banerjee S, Robinson RD, Herman I, Laibowitz R, O’Brien S (2006) J Appl Phys 100:034316CrossRefGoogle Scholar
  5. 5.
    Ramadan T, Levy M, Osgood RM (2000) Appl Phys Lett 76:1407CrossRefGoogle Scholar
  6. 6.
    Scott JF, Morrison FD, Miyake M, Zubko P, Lou X, Kugler VM, Rios S, Zhang M (2005) J Am Ceram Soc 88:1691CrossRefGoogle Scholar
  7. 7.
    Rüdiger A, Waser R (2008) J Alloys Compd 449:2CrossRefGoogle Scholar
  8. 8.
    Gruverman A, Kholkin A (2006) Rep Prog Phys 69:2443CrossRefGoogle Scholar
  9. 9.
    Scott JF, Paz de Araujo C (1989) Science 246:1400CrossRefGoogle Scholar
  10. 10.
    Mitsui T, Furuichi J (1953) Phys Rev 90:193CrossRefGoogle Scholar
  11. 11.
    Roytburd AL (1976) Phys Status Solidi A 37:329CrossRefGoogle Scholar
  12. 12.
    Wang CL, Smith SRP (1995) J Phys: Condens Matter 7:7163Google Scholar
  13. 13.
    Bratkovsky AM, Levanyuk AP (2005) Phys Rev Lett 94:107601CrossRefGoogle Scholar
  14. 14.
    Junquera J, Ghosez P (2003) Nature 422:506CrossRefGoogle Scholar
  15. 15.
    Naumov I, Fu H, Bellaiche L (2004) Nature 432:737CrossRefGoogle Scholar
  16. 16.
    Ishibashi Y, Orihara H (1992) Jpn J Appl Phys 61:4650CrossRefGoogle Scholar
  17. 17.
    Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714CrossRefGoogle Scholar
  18. 18.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
  19. 19.
    Bratkovsky AM, Levanyuk AP (2000) Phys Rev B 61:15042CrossRefGoogle Scholar
  20. 20.
    O’Neill D, Bowman RM, Gregg JM (2000) Appl Phys Lett 77:1520CrossRefGoogle Scholar
  21. 21.
    Akdogan EK, Safari A (2007) J Appl Phys 101:064114CrossRefGoogle Scholar
  22. 22.
    Akdogan EK, Safari A (2007) J Appl Phys 101:064115CrossRefGoogle Scholar
  23. 23.
    Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Science 306:1005CrossRefGoogle Scholar
  24. 24.
    Warusawithana MP, Cen C, Sleasman CR, Woicik JC, Li Y, Kourkoutis LF, Klug JA, Li H, Ryan P, Wang LP, Bedzyk M, Muller DA, Chen LQ, Levy J, Schlom DG (2009) Science 324:367CrossRefGoogle Scholar
  25. 25.
    Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthelemy A, Bibes M (2009) Nature. doi: https://doi.org/10.1038/nature08128 CrossRefGoogle Scholar
  26. 26.
    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2005) Nature 430:758CrossRefGoogle Scholar
  27. 27.
    Dawber M, Lichtensteiger C, Cantoni M, Veithen M, Ghosez P, Johnston K, Rabe KM, Triscone JM (2005) Phys Rev Lett 95:177601CrossRefGoogle Scholar
  28. 28.
    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone JM, Ghosez P (2008) Nature 452:732CrossRefGoogle Scholar
  29. 29.
    Mantese JV, Alpay SP (2005) Graded ferroelectrics, transpacitors, and transponents. Springer, New YorkGoogle Scholar
  30. 30.
    Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C (2004) Science 304:1650CrossRefGoogle Scholar
  31. 31.
    Tybell T, Ahn CH, Triscone JM (1999) Appl Phys Lett 75:856CrossRefGoogle Scholar
  32. 32.
    Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thompson C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Phys Rev Lett 96:127601CrossRefGoogle Scholar
  33. 33.
    Urban JJ, Spanier JE, Ouyang L, Yun WS, Park H (2003) Adv Mater 15:423CrossRefGoogle Scholar
  34. 34.
    Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Ouyang L, Yun WS, Rappe AM, Park H (2006) Nano Lett 6:735CrossRefGoogle Scholar
  35. 35.
    Rüdiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Appl Phys A 80:1247CrossRefGoogle Scholar
  36. 36.
    Alexe M, Hesse D (2006) J Mater Sci 41:1. doi: https://doi.org/10.1007/s10853-005-5912-x CrossRefGoogle Scholar
  37. 37.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353CrossRefGoogle Scholar
  38. 38.
    Yoon S, Baik S, Kim MG, Shin N (2006) J Am Ceram Soc 89:1816CrossRefGoogle Scholar
  39. 39.
    Hoshina T, Kakemoto H, Tsurumi T, Wada S, Yashima M (2006) J Appl Phys 99:054311CrossRefGoogle Scholar
  40. 40.
    O’Brien S, Brus LE, Murray CB (2001) J Am Chem Soc 123:12085CrossRefGoogle Scholar
  41. 41.
    Zhao J, Wang X, Li L, Wang X, Li Y (2008) Ceram Int 34:1223CrossRefGoogle Scholar
  42. 42.
    Whang D, Jin S, Wu Y, Lieber CM (2003) Nano Lett 3:1255CrossRefGoogle Scholar
  43. 43.
    Masuda H, Fukuda K (1995) Science 268:1466CrossRefGoogle Scholar
  44. 44.
    Sadasivan V, Richter CP, Menon L, Williams PF (2005) AIChE Journal 51:649CrossRefGoogle Scholar
  45. 45.
    Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Goesele U (2002) Science 296:1997CrossRefGoogle Scholar
  46. 46.
    Urban JJ, Yun WS, Gu Q, Park H (2002) J Am Chem Soc 124:1186CrossRefGoogle Scholar
  47. 47.
    Hernandez BA, Chang KS, Fisher ER, Dorhout PK (2002) Chem Mater 14:480CrossRefGoogle Scholar
  48. 48.
    Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440CrossRefGoogle Scholar
  49. 49.
    Morrison FD, Ramsay L, Scott JF (2003) J Phys-Condens Matter 15:L527CrossRefGoogle Scholar
  50. 50.
    Park TJ, Mao Y, Wong SS (2004) Chem Commun 23:2708CrossRefGoogle Scholar
  51. 51.
    Zhao L, Steinhart M, Yu J, Gösele U (2006) J Mater Res 21:685CrossRefGoogle Scholar
  52. 52.
    Cheng JY, Ross CA, Smith HI, Thomas EL (2006) Adv Mater 18:2505CrossRefGoogle Scholar
  53. 53.
    Evans PR, Zhu X, Baxter P, McMillen M, McPhillips J, Morrison FD, Scott JF, Pollard RJ, Bowman RM, Gregg JM (2007) Nano Lett 7:1134CrossRefGoogle Scholar
  54. 54.
    Lee W, Han H, Lotnyk A, Schubert MA, Senz S, Alexe M, Hesse D, Baik S, Gösele U (2008) Nat Nanotechnol 3:402CrossRefGoogle Scholar
  55. 55.
    Yun WS, Urban JJ, Gu Q, Park H (2002) Nano Lett 2:447CrossRefGoogle Scholar
  56. 56.
    Kalinin SV, Bonnell DA (2000) J Appl Phys 87:3950CrossRefGoogle Scholar
  57. 57.
    Noma T, Wada S, Yano M, Suzuki T (1996) J Appl Phys 80:5223CrossRefGoogle Scholar
  58. 58.
    Abicht HP, Voltzke D, Schneider R, Woltersdorf J, Lichtenberger O (1998) Mater Chem Phys 55:188CrossRefGoogle Scholar
  59. 59.
    Wegmann M, Watson L, Hendry A (2004) J Am Ceram Soc 87:371CrossRefGoogle Scholar
  60. 60.
    Sun Q, Reuter K, Scheffler M (2003) Phys Rev B 67:205424CrossRefGoogle Scholar
  61. 61.
    Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103CrossRefGoogle Scholar
  62. 62.
    Wang RV, Fong DD, Jiang F, Highland MJ, Fuoss PH, Thompson C, Kolpak AM, Eastman JA, Streiffer SK, Rappe AM, Stephenson GB (2009) Phys Rev Lett 102:047601CrossRefGoogle Scholar
  63. 63.
    Li D, Zhao MH, Garra J, Kolpak AM, Rappe AM, Bonnell DA, Vohs JM (2008) Nat Mater 7:473CrossRefGoogle Scholar
  64. 64.
    Rodriguez BJ, Gao XS, Liu LF, Lee W, Naumov II, Bratkovsky AM, Hesse D, Alexe M (2009) Nano Lett 9:1127CrossRefGoogle Scholar
  65. 65.
    Morozovska AN, Eliseev EA, Glinchuk MD (2007) Phys B 387:358CrossRefGoogle Scholar
  66. 66.
    Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phase Transit 80:71CrossRefGoogle Scholar
  67. 67.
    Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phys Rev B 76:014102CrossRefGoogle Scholar
  68. 68.
    Yadlovker D, Berger S (2005) Phys Rev B 71:184112CrossRefGoogle Scholar
  69. 69.
    Wang Z, Hu J, Yu MF (2006) Appl Phys Lett 89:263119CrossRefGoogle Scholar
  70. 70.
    Alexe M, Hesse D, Schmidt V, Senz S, Fan HJ, Zacharias M, Gösele U (2006) Appl Phys Lett 89:172907CrossRefGoogle Scholar
  71. 71.
    Damjanovic D, Budimir M, Davis M, Setter N (2006) J Mater Sci 41:65. doi: https://doi.org/10.1007/s10853-005-5925-5 CrossRefGoogle Scholar
  72. 72.
    Nonnenmann SS, Leaffer OD, Gallo EM, Coster MT, Joseph RS, Spanier JE (2009) Ferroelectric properties of co-axial noble-metal/oxide core/shell perovskite nanowires. MRS fall meeting, Boston MA, Poster C9.5Google Scholar
  73. 73.
    Gruverman A, Kalinin SV (2006) J Mater Sci 41:107. doi: https://doi.org/10.1007/s10853-005-5946-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations