Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4466–4471 | Cite as

Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite

  • Jun-Wei Lang
  • Ling-Bin KongEmail author
  • Wei-Jin Wu
  • Yong-Chun Luo
  • Long Kang
Article

Abstract

A novel composite of Ni(OH)2/ultra-stable Y zeolite materials was synthesized by an improved chemical precipitation method, which used the ultra-stable Y zeolite as the template. The Ni(OH)2/ultra-stable Y zeolite composite and its microstructure were characterized by X-ray diffraction measurements and transmission electron microscopy. Electrochemical studies were carried out using cyclic voltammetry, chronopotentiometry technology and ac impedance spectroscopy, respectively. The result shows that the loose-packed whisker Ni(OH)2 phase has profound impacts on electrode performance at very high power output. A maximum discharge capacity of 185.6 mA-h/g (1670 F/g), or 371 mA-h/g (3340 F/g) after correcting for weight percent of nickel hydroxide phase at the current density of 625 mA/g could be achieved in a half-cell setup configuration for the Ni(OH)2/ultra-stable Y zeolite electrode, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effect of NH4Cl concentration on the electrochemical properties characteristics has also been systemically explored.

Keywords

Specific Capacitance Discharge Capacity Nickel Hydroxide Electrochemical Capacitor Secondary Batterie 

Notes

Acknowledgements

This study is supported by the National Natural Science Foundation of China (No. 50602020), the Natural Science Foundation of Gansu Province (No. 0803RJZA002) and the Program for Outstanding Young Teachers in Lanzhou University of Technology (No. Q200803).

References

  1. 1.
    Wang XY, Yan J, Zhang YS, Yuan HT, Song DY (1998) J Appl Electrochem 28:1377CrossRefGoogle Scholar
  2. 2.
    Buono-core GE, Tejos M, Alveal G, Hill RH (2000) J Mater Sci 35:4873. doi: https://doi.org/10.1023/A:1004857720136 CrossRefGoogle Scholar
  3. 3.
    Lei LX, Hu M, Gao XR, Sun YM (2008) Electrochim Acta 54:671CrossRefGoogle Scholar
  4. 4.
    Kuma VG, Munichandraiah N, Kamath PV, Shukla AK (1995) J Power Sources 56:111CrossRefGoogle Scholar
  5. 5.
    Lang JW, Kong LB, Wu WJ, Luo YC, Kang L (2008) Chem Commun 35:4213CrossRefGoogle Scholar
  6. 6.
    Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2009) J Solid State Electrochem 13:333CrossRefGoogle Scholar
  7. 7.
    Cao L, Kong LB, Liang YY, Li HL (2004) Chem Commun 14:1646CrossRefGoogle Scholar
  8. 8.
    Srinivasan V, Weidner JW (1997) J Electrochem Soc 144:L210CrossRefGoogle Scholar
  9. 9.
    Cheng J, Cao GP, Yang YS (2006) J Power Sources 159:734CrossRefGoogle Scholar
  10. 10.
    Wu MS, Huang YA, Yang CH, Jow JJ (2007) Int J Hydrogen Energy 32:4153CrossRefGoogle Scholar
  11. 11.
    Yang DN, Wang RM, He MS, Zhang J, Liu ZF (2005) J Phys Chem B 109:7654CrossRefGoogle Scholar
  12. 12.
    Chen DL, Gao L (2005) Chem Phys Lett 405:159CrossRefGoogle Scholar
  13. 13.
    Wang Y, Zhu QS, Zhang HG (2005) Chem Commun 41:5231CrossRefGoogle Scholar
  14. 14.
    Li YM, Li WY, Chou SL, Chen J (2008) J Alloys Compd 456:339CrossRefGoogle Scholar
  15. 15.
    Wang DB, Song CX, Hu ZS, Fu X (2005) J Phys Chem B 109:1125Google Scholar
  16. 16.
    Wu MS, Hsieh HH (2008) Electrochim Acta 53:3427CrossRefGoogle Scholar
  17. 17.
    Barakat NAM, Omran AEM, Aryal S, Sheikh FA, Kang HK, Kim HY (2008) J Mater Sci 43:860. doi: https://doi.org/10.1007/s10853-007-2190-9 CrossRefGoogle Scholar
  18. 18.
    Song QS, Li YY, Lchan SL (2005) J Appl Electrochem 35:157CrossRefGoogle Scholar
  19. 19.
    Liu KC, Anderson MA (1996) J Electrochem Soc 143:124CrossRefGoogle Scholar
  20. 20.
    Xing W, Li F, Yan ZF, Lu GQ (2004) J Power Sources 134:324CrossRefGoogle Scholar
  21. 21.
    Wang YG, Xia YY (2006) Electrochim Acta 51:3223CrossRefGoogle Scholar
  22. 22.
    Huang QH, Wang XY, Li J, Dai CL, Gamboa S, Sebastian PJ (2007) J Power Sources 164:425CrossRefGoogle Scholar
  23. 23.
    Cao L, Lu M, Li HL (2005) J Electrochem Soc 152:A871CrossRefGoogle Scholar
  24. 24.
    Vazquez MV, Avena MJ, Pauli CP (1995) Electrochim Acta 40:907CrossRefGoogle Scholar
  25. 25.
    Xu MW, Bao SJ, Li HL (2007) J Solid State Electrochem 11:372CrossRefGoogle Scholar
  26. 26.
    Zhang SS, Xu K, Jow TR (2004) Electrochim Acta 49:1057CrossRefGoogle Scholar
  27. 27.
    Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N (1994) J Electrochem Soc 141:2956CrossRefGoogle Scholar
  28. 28.
    Jayashree RS, Kamath PV (2001) J Appl Electrochem 31:1315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jun-Wei Lang
    • 1
  • Ling-Bin Kong
    • 1
    Email author
  • Wei-Jin Wu
    • 1
  • Yong-Chun Luo
    • 2
  • Long Kang
    • 2
  1. 1.State Key Laboratory of Gansu Advanced Non-ferrous Metal MaterialsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.Key Laboratory of Non-ferrous Metal Alloys and Processing of Ministry of EducationLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations