Journal of Materials Science

, Volume 44, Issue 16, pp 4443–4454 | Cite as

Microstructure and strengthening mechanisms of a cast Mg–1.48Gd–1.13Y–0.16Zr (at.%) alloy

  • L. Gao
  • R. S. ChenEmail author
  • E. H. Han


The microstructure and mechanical properties of a Mg–1.48Gd–1.13Y–0.16Zr (at.%) alloy in the as-cast, solution-treated, peak-aged and over-aged conditions have been investigated by a combination of thermodynamic calculations and experimental approaches. It is shown that both the Mg24(Gd,Y)5 and cuboid-shaped Mg5(Gd,Y) phases exist in the as-cast sample, which is in good agreement with the Scheil solidification model. The former is dissolved during solution treatment, while the latter persists and coarsens. Subsequent artificial ageing results in the formation of metastable β′ precipitates within the α-Mg matrix and along the grain boundaries. The peak-aged alloy exhibits maximum ultimate tensile strength and tensile yield strength of 370 and 277 MPa, respectively, at room temperature. Moreover, the strengths decrease gently from room temperature to 250 °C with a gradual increase of elongation. The strengthening contributions to the yield strength are quantitatively evaluated from individual strengthening mechanisms by using measured microstructural parameters. The modelled yield strengths are compared with the experimental results and a reasonable agreement is reached.


Solid Solution Strengthen Precipitation Strengthen Tensile Yield Strength Rare Earth Element Boundary Strengthen 



The authors gratefully acknowledge the financial support from the National Basic Research Program of China (973 Program) through project no. 2007CB613704. Assistance of Dr. W. Tang with TEM analysis is also gratefully acknowledged.


  1. 1.
    Park JP, Kim MG, Yoon US, Kim WJ (2009) J Mater Sci 44:47. doi: CrossRefGoogle Scholar
  2. 2.
    Figueiredo RB, Langdon TG (2008) J Mater Sci 43:7366. doi: CrossRefGoogle Scholar
  3. 3.
    Liu Y, Yuan GY, Lu C, Ding WJ, Jiang JZ (2008) J Mater Sci 43:5527. doi: CrossRefGoogle Scholar
  4. 4.
    Wang J, Meng J, Zhang D, Tang D (2007) Mater Sci Eng A 456:78CrossRefGoogle Scholar
  5. 5.
    He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2007) J Alloys Compd 427:316CrossRefGoogle Scholar
  6. 6.
    Gao X, He SM, Zeng XQ, Peng LM, Ding WJ, Nie JF (2006) Mater Sci Eng A 431:322CrossRefGoogle Scholar
  7. 7.
    Yang Z, Li JP, Guo YC, Liu T, Xia F, Zeng ZW, Liang MX (2007) Mater Sci Eng A 454–455:274CrossRefGoogle Scholar
  8. 8.
    Honma T, Ohkubo T, Hono K, Kamado S (2005) Mater Sci Eng A 395:301CrossRefGoogle Scholar
  9. 9.
    He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2006) J Alloys Compd 421:309CrossRefGoogle Scholar
  10. 10.
    Anyanwu IA, Kamado S, Kojima Y (2001) Mater Trans 42:1212CrossRefGoogle Scholar
  11. 11.
    Smola B, Stulıkova I, Buch Fv, Mordike BL (2002) Mater Sci Eng A 324:113CrossRefGoogle Scholar
  12. 12.
    Peng QM, Wu YM, Fang DQ, Meng J, Wang LM (2007) J Mater Sci 42:3908. doi: CrossRefGoogle Scholar
  13. 13.
    Wu YJ, Lin DL, Zeng XQ, Peng LM, Ding WJ (2009) J Mater Sci 44:1607. doi: CrossRefGoogle Scholar
  14. 14.
    Lin L, Chen LJ, Liu Z (2008) J Mater Sci 43:4493. doi: CrossRefGoogle Scholar
  15. 15.
    Nie JF, Oh-ishi K, Gao X, Hono K (2008) Acta Mater 56:6061CrossRefGoogle Scholar
  16. 16.
    Hutchinson CR, Nie JF, Gorrse S (2005) Metall Mater Trans 36A:2093CrossRefGoogle Scholar
  17. 17.
    Li X, Miodownik AP, Saunders N (2001) J Phase Equilib 22:247CrossRefGoogle Scholar
  18. 18.
    Guo CP, Du ZM, Li CR (2007) CALPHAD 31:75CrossRefGoogle Scholar
  19. 19.
    Guo YC, Li JP, Li JS, Yang Z, Zhao J, Xia F, Liang MX (2008) J Alloys Compd 450:446CrossRefGoogle Scholar
  20. 20.
    Dinsdale AT (1991) CALPHAD 15:317CrossRefGoogle Scholar
  21. 21.
    Nie JF (2003) Scr Mater 48:1009CrossRefGoogle Scholar
  22. 22.
    Hauser FE, Landon PR, Dorn JE (1956) AIME Trans 206:589Google Scholar
  23. 23.
    Gao L, Chen RS, Han EH (2009) J Alloys Compd 481:379CrossRefGoogle Scholar
  24. 24.
    Gao L, Chen RS, Han EH (2009) J Alloys Compd 472:234CrossRefGoogle Scholar
  25. 25.
    Suzuki M, Sato H, Maruyama K, Oikawa H (1998) Mater Sci Eng A 252:248CrossRefGoogle Scholar
  26. 26.
    Dahle AK, Lee YC, Nave MD, Schaffer PL, StJohn DH (2001) J Light Met 1:61CrossRefGoogle Scholar
  27. 27.
    Friedrich HE, Mordike BL (2006) Mg technology. Springer, Berlin, HeidelbergGoogle Scholar
  28. 28.
    Zhang MX, Kelly PM (2005) Acta Mater 53:1085CrossRefGoogle Scholar
  29. 29.
    Fornasini ML, Manfrinetti P (1986) Acta Crystallogr C42:138Google Scholar
  30. 30.
    Liu K, Zhang JH, Sun W, Qiu X, Lu HY, Tang DX, Rokhlin LL, Elkin FM, Meng J (2009) J Mater Sci 44:74. doi: CrossRefGoogle Scholar
  31. 31.
    Rokhlin LL, Nikitina NI (1998) J Alloys Compd 279:166CrossRefGoogle Scholar
  32. 32.
    Zhu SM, Nie JF (2004) Scr Mater 50:51CrossRefGoogle Scholar
  33. 33.
    Gao Y, Wang Q, Gu J, Zhao Y, Tong Y (2007) Mater Sci Eng A 459:117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Corrosion and Protection, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations