Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4422–4428 | Cite as

Preparation and application of Cu/Cr hydrotalcite-like compounds

  • Qingze JiaoEmail author
  • Hongbo Liu
  • Yun Zhao
  • Zhe Zhang
Article

Abstract

A series of copper/chromium hydrotalcite-like compounds (Cu/Cr-HTlcs) with Cu/Cr molar ratios from 1:1 to 4:1 synthesized by coprecipitation reaction using NaOH and Na2CO3 as precipitation agents and their derived Cu/Cr mixed oxides (Cu/Cr-MO) were used in solid propellant for the first time. The structure, morphology and thermal behaviors were investigated using inductively coupled plasma optical emission spectrometry, X-ray diffraction, Fourier-transform infrared spectroscopy, N2 volumetric measurements, transmission electron microscope, thermogravimetry, and differential thermal analysis. The results showed that a well crystallized Cu/Cr-HTlcs with CO32− as interlayer anions could be obtained with Cu and Cr molar ratio of 2:1, system pH value between 9 and 11, aging time longer than 24 h; the sample has a specific surface area of 107.8 m2 g−1 and average pore diameter is 9 nm with pore volume of 0.34 cm3 g−1; N2 adsorption–desorption isotherm is type IVb with H2-type hysteresis loop; thermal stability of the sample is relatively lower and the sample tends to be curled when the aging time is prolonged to 1 week at room temperature. Solid propellant with Cu/Cr-MO catalyst exhibit significantly higher burning rate of 9.64 mm s−1 than those without catalyst (6.28 mm s−1)/with CuO · Cr2O3 catalyst (9.07 mm s−1). Press index also decreases from 0.339 to 0.299, and mechanical performance on elongation for Cu/Cr-MO catalyzed propellant has a clear enhancement.

Keywords

Burning Rate Hydrotalcite Solid Propellant Teller Effect Catalyst Dosage 

Abbreviations

Cu/Cr-HTlcs

Copper/chromium hydrotalcite-like compounds

Cu/Cr-MO

Cu/Cr mixed oxides

ICP-OES

Inductively coupled plasma optical emission spectrometry

XRD

X-ray diffraction

FT-IR

Fourier-transform infrared spectroscopy

TEM

Transmission electron microscope

TG

Thermogravimetry

DTA

Differential thermal analysis

Notes

Acknowledgement

Financial supports from the Final Assembly Line “15” pre-research (No. 41328030507) fund are gratefully acknowledged.

References

  1. 1.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  2. 2.
    Shen JY, Guang B, Tu M (1996) Catal Today 30:77CrossRefGoogle Scholar
  3. 3.
    Centi G, Perathoner S (2007) Appl Catal B Environ 70:172CrossRefGoogle Scholar
  4. 4.
    Palomares AE, Uzcàtegui A, Corma A (2008) Catal Today 137:261CrossRefGoogle Scholar
  5. 5.
    Trujillano R, Holgado MJ, González JL (2005) Solid State Sci 7:931CrossRefGoogle Scholar
  6. 6.
    Shiau CY, Chen S, Tsai JC, Lin SI (2000) Appl Catal A Gen 198:95CrossRefGoogle Scholar
  7. 7.
    Mónica C, Celso P, Julio F, Griselda E, Eduardo H, Sandra C, Enrique RC (2007) Appl Catal A Gen 317:11CrossRefGoogle Scholar
  8. 8.
    Iglesias AH, Ferreira OP, Gouveia DX (2005) Solid State Chem 178:142CrossRefGoogle Scholar
  9. 9.
    Meda L, Marra G, Galfetti L, Inchingalo S, Severini F, De Luca L (2005) Compos Sci Technol 65:769CrossRefGoogle Scholar
  10. 10.
    Wang BY, Feng ZG, Yang RJ (1997) Powder burning theory. Beijing Institute of Technology Press, BeijingGoogle Scholar
  11. 11.
    Dokhan A, Price EW, Seitzman JM, Sigman RK (2002) Proc Combust Inst 29:2939CrossRefGoogle Scholar
  12. 12.
    Galfetti L, DeLuca LT, Severini F, Colombo G, Meda L, Marra G (2007) Aerosp Sci Technol 11:26CrossRefGoogle Scholar
  13. 13.
    Liu LL, Li FS, Tan LH (2007) J Solid Rocket Technol 30:52Google Scholar
  14. 14.
    Chen AS, Li FS, Ma ZY, Liu HY (2004) J Solid Rocket Technol 27:123Google Scholar
  15. 15.
    Chai YP, Zhang TL (2007) J Solid Rocket Technol 30:44Google Scholar
  16. 16.
    Cudennec Y, Lecerf A (2003) Solid State Sci 5:1471CrossRefGoogle Scholar
  17. 17.
    Trifiro F, Vaccari A (1996) In: Atwood JL (ed) Comprehensive supramolecular chemistry. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids. Principles, methodology and applications. Academic Press, LondonGoogle Scholar
  19. 19.
    Kannan S, Velu S, Ramkumar V, Swamy CS (1995) J Mater Sci 30:1462. doi: https://doi.org/10.1007/BF00375249 CrossRefGoogle Scholar
  20. 20.
    Kannan S, Rives V, Knözinger H (2004) Solid State Chem 177:319CrossRefGoogle Scholar
  21. 21.
    Velu S, Swamy CS (1996) J Mater Sci Lett 15:1674CrossRefGoogle Scholar
  22. 22.
    Alejandre A, Medina F, Salagre P, Corregi X, Sueiras JE (1999) Chem Mater 11:939CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical Engineering and EnvironmentBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations