Journal of Materials Science

, Volume 44, Issue 16, pp 4413–4421 | Cite as

Structural characteristics and high-temperature oxidation behavior of porous Fe–40 at.%Al alloy

  • P. Z. Shen
  • M. Song
  • H. Y. Gao
  • Y. H. HeEmail author
  • J. ZouEmail author
  • N. P. Xu
  • B. Y. Huang
  • C. T. Liu


Porous FeAl alloy was prepared by Fe and Al elemental reaction synthesis. The cyclic oxidation evolutions of porous Fe–40 at.%Al alloy at the elevated temperatures of 600 and 800 °C in air were studied and compared to porous materials of Ti, Ni, and 316L stainless steel. It has been shown that the oxidation of porous Fe–40 at.%Al alloy fitted a power law and no spallation was found after cyclic oxidation for 202 h in air. The porous FeAl alloy exhibits much better oxidation resistance than other porous materials, such as Ti, Ni, and 316L stainless steel, indicating that the porous Fe–40 at.%Al alloy has the highest structural stability at the elevated temperature in the oxidation atmosphere. Thus, the porous FeAl alloy can be used as filtering materials at elevated temperature in the oxidation atmosphere.


Porous Material High Temperature Oxidation 316L Stainless Steel Oxidation Time Cyclic Oxidation 



This research was performed under the auspices of National Basic Research Program of China (No. 2009CB623400), National Natural Science Foundation of China (No.20476106 and No.20636020), National Natural Science Founds for Distinguished Young Scholar (No.50825102) and the 111 Project of Chinese Ministry of Education.


  1. 1.
    Davis TW (2000) Air pollution engineering manual. Wiley, CanadaGoogle Scholar
  2. 2.
    Chae SH, Kim YW (2009) J Mater Sci 44:1404. doi: CrossRefGoogle Scholar
  3. 3.
    Qiu MH, Feng J, Fan YQ, Xu NP (2009) J Mater Sci 44:689. doi: CrossRefGoogle Scholar
  4. 4.
    Hsieh HP (1996) Inorganic membrane for separation and reaction. Elsevier Science B V, New YorkGoogle Scholar
  5. 5.
    She JH, Ohji T (2002) J Am Ceram Soc 85:2125CrossRefGoogle Scholar
  6. 6.
    Liu PS, Liang KM (2001) J Mater Sci 36:5059. doi: CrossRefGoogle Scholar
  7. 7.
    Deevi SC, Sikka VK, Liu CT (1997) Prog Mater Sci 42:177CrossRefGoogle Scholar
  8. 8.
    Guilemany JM, Cinca N, Casas L, Molins E (2009) J Mater Sci 44:2152. doi: CrossRefGoogle Scholar
  9. 9.
    Stoloff NS, Liu CT, Deevi SC (2000) Intermetallics 8:1313CrossRefGoogle Scholar
  10. 10.
    Pang HJ, Ye YF, Chen B (2006) Heat Treat Met 31:55Google Scholar
  11. 11.
    Ranganath S, Prakash TL, Subrahmanyam J (1990) Mater Lett 10:215CrossRefGoogle Scholar
  12. 12.
    Godlewska E, Szczepanik S, Mania R, Krawiarz J, Kozinski S (2003) Intermetallics 11:307CrossRefGoogle Scholar
  13. 13.
    He YH, Jiang Y, Xu NP, Zou J, Huang BY, Liu CT, Liaw PK (2007) Adv Mater 19:2102CrossRefGoogle Scholar
  14. 14.
    Jiang Y, He YH, Xu NP, Zou J, Huang BY, Liu CT (2008) Intermetallic 16:327CrossRefGoogle Scholar
  15. 15.
    Gao HY, He YH, Shen PZ, Xu NP, Zou J, Jiang Y, Huang BY, Liu CT (2008) Powder Metall 51:171CrossRefGoogle Scholar
  16. 16.
    Saunders SRJ, Monteiro M, Rizzo F (2008) Prog Mater Sci 53:775CrossRefGoogle Scholar
  17. 17.
    Almathami A, Elhachmi E, Brochu M (2008) J Mater Sci 43:3452. doi: CrossRefGoogle Scholar
  18. 18.
    Bull SJ (1998) Oxid Met 49:1CrossRefGoogle Scholar
  19. 19.
    Messaoudi K, Huntz AM, Menza LD (2000) Oxid Met 53:49CrossRefGoogle Scholar
  20. 20.
    Klinger L, Rabkin E, Shvindlerman LS, Gottstein G (2008) J Mater Sci 43:5068. doi: CrossRefGoogle Scholar
  21. 21.
    Lin XQ, He YH, Jiang Y, Zhang FS (2005) Mater Sci Eng Powder Metall 10:127Google Scholar
  22. 22.
    German RM (1994) Powder metallurgy science. Metal Powder Industries Federation, Princeton, p 370Google Scholar
  23. 23.
    Kim H, Han Y, Park J (2009) Mater Charact 60:14CrossRefGoogle Scholar
  24. 24.
    Czichos H, Saito T, Smith L (2006) Springer handbook of measurement methods for materials properties. Springer Science + Business Media, Inc, New YorkCrossRefGoogle Scholar
  25. 25.
    Chan CDN, Huvier C, Dinhut JF (2001) Intermetallics 9:817CrossRefGoogle Scholar
  26. 26.
    Montealegre MA, Gonzalez-Carrasco JL, Mun oz-Morris MA (2001) Intermetallics 9:487CrossRefGoogle Scholar
  27. 27.
    Molin S, Gazda M, Kusz B, Jasinski P (2008) J Eur Ceram Soc. doi: CrossRefGoogle Scholar
  28. 28.
    Li MS (2001) High temperature corrosion of metals. Metallurgical Industry Press, BeijingGoogle Scholar
  29. 29.
    Montealegre MA, Gonzalez-Carrasco JL, Morris-Munoz MA, Chao J, Morris DG (2000) Intermetallics 8:439CrossRefGoogle Scholar
  30. 30.
    Rao VS, Baligidad RG, Raja VS (2002) Intermetallics 10:73CrossRefGoogle Scholar
  31. 31.
    Qu HL, Zhou L, Wei HR, Zhao YQ (2001) Chinese J Nonferrous Met 11:398Google Scholar
  32. 32.
    Zhai JK (1994) High temperature corrosion of metals. Beijing Aeronautic and Astronautics University Press, Beijing, p 60Google Scholar
  33. 33.
    Deevi SC (2000) Intermetallics 8:679CrossRefGoogle Scholar
  34. 34.
    Novikov VV (1983) J Eng Phys 44:660Google Scholar
  35. 35.
    Lang FQ, Yu ZM, Gedevanishvili S, Deevi SC, Narita T (2004) Intermetallics 12:451CrossRefGoogle Scholar
  36. 36.
    Deevi SC, Swindeman RW (1998) Mater Sci Eng A 258:203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.School of Engineering and Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneAustralia
  3. 3.Membrane Science and Technology Research Center, Nanjing University of TechnologyNanjingChina
  4. 4.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations