Journal of Materials Science

, Volume 44, Issue 16, pp 4407–4412 | Cite as

Synthesis of Fe3O4 polyhedra by hydrothermal method: using l-arginine as precipitator

  • Lianfeng Duan
  • Shusheng Jia
  • Yanjun Wang
  • Jian Chen
  • Lijun ZhaoEmail author


Unusual polyhedral structures of cubic Fe3O4 were fabricated in high yield via a facile hydrothermal method in the presence of a surfactant cetyltrimethyammonium bromide (CTAB). Hexagonal, dodecahedral, truncated octahedral, and octahedral shapes can be prepared by changing the concentration of the CTAB in l-arginine solutions. In the solution-phase synthesis, both the l-arginine and CTAB were found to be the prime factors for the formation of the polyhedral structures. In addition, room-temperature vibrating sample magnetometer (VSM) testing results indicated that the magnetite synthesized without the addition of CTAB had the highest Ms value and the lowest Hc value. This synthesis method is also suitable for the preparation of other ferrites with spinel structure.


Ferrite Magnetite CTAB HRTEM Vibrate Sample Magnetometer 



This study was supported by the Basic Research Expenses for the Special Funds of Jilin University.


  1. 1.
    Jiang J, Ai LH, Li LC (2009) J Mater Sci 44:1024. doi: CrossRefGoogle Scholar
  2. 2.
    Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P (2007) J Mater Sci 42:7566. doi: CrossRefGoogle Scholar
  3. 3.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115CrossRefGoogle Scholar
  4. 4.
    Wang X, Zhuang J, Peng Q, Li YD (2005) Nature 437:121CrossRefGoogle Scholar
  5. 5.
    Speliotis DE (1999) J Magn Magn Mater 193:29CrossRefGoogle Scholar
  6. 6.
    Raj K, Mostowitz B, Casciari R (1995) J Magn Magn Mater 149:174CrossRefGoogle Scholar
  7. 7.
    Oswald P, Clement O, Chambon C, Schuman-Claeys E, Frija G (1997) Magn Reson Imaging 15:1025CrossRefGoogle Scholar
  8. 8.
    Berry C, Curtis ASG (2003) J Phys D Appl Phys 36:R182CrossRefGoogle Scholar
  9. 9.
    Bourlinos AB, Bakandritsos A et al (2006) J Mater Sci 41:5250. doi: CrossRefGoogle Scholar
  10. 10.
    Liu XM, Fu SY, Zhu LP (2007) J Solid State Chem 180:461CrossRefGoogle Scholar
  11. 11.
    Cho SB, Noh JS, Park SJ, Lim DY, Choi SH (2007) J Mater Sci 42:4877. doi: CrossRefGoogle Scholar
  12. 12.
    Liu XM, Fu SY, Xiao HM (2006) Mater Lett 60:2979CrossRefGoogle Scholar
  13. 13.
    Liu Q, Huang HX, Lai LF, Sun JH, Shang TM, Zhou QF, Xu Z (2009) J Mater Sci 44:1187. doi: CrossRefGoogle Scholar
  14. 14.
    Zou GF, Xiong K, Jiang CL, Li H, Li TW, Du J, Qian YT (2005) J Phys Chem B 109:18356CrossRefGoogle Scholar
  15. 15.
    Yu DB, Sun XQ, Zou JW, Wang ZR, Wang F, Tang K (2006) J Phys Chem B 110:21667CrossRefGoogle Scholar
  16. 16.
    Chin KC, Poh CK, Chong GL, Van LH, Sow CH, Lin JY, Wee ATS (2007) J Phys Chem C 111:9136CrossRefGoogle Scholar
  17. 17.
    Sun Y, Xia Y (2002) Science 298:2176–2179CrossRefGoogle Scholar
  18. 18.
    Xiong Y, Xia Y (2007) Adv Mater 19:3385CrossRefGoogle Scholar
  19. 19.
    Xiong Y, McLellan JM, Yin Y, Xia Y (2007) Angew Chem Int Ed 46:790CrossRefGoogle Scholar
  20. 20.
    Swaminathan R, Willard MA, Mchenry ME (2006) Acta Mater 54:807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lianfeng Duan
    • 1
  • Shusheng Jia
    • 1
  • Yanjun Wang
    • 2
  • Jian Chen
    • 1
  • Lijun Zhao
    • 1
    Email author
  1. 1.Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  2. 2.The Second Hospital of Jilin UniversityChangchunPeople’s Republic of China

Personalised recommendations