Synthesis of Fe3O4 polyhedra by hydrothermal method: using l-arginine as precipitator
- 520 Downloads
- 18 Citations
Abstract
Unusual polyhedral structures of cubic Fe3O4 were fabricated in high yield via a facile hydrothermal method in the presence of a surfactant cetyltrimethyammonium bromide (CTAB). Hexagonal, dodecahedral, truncated octahedral, and octahedral shapes can be prepared by changing the concentration of the CTAB in l-arginine solutions. In the solution-phase synthesis, both the l-arginine and CTAB were found to be the prime factors for the formation of the polyhedral structures. In addition, room-temperature vibrating sample magnetometer (VSM) testing results indicated that the magnetite synthesized without the addition of CTAB had the highest Ms value and the lowest Hc value. This synthesis method is also suitable for the preparation of other ferrites with spinel structure.
Keywords
Ferrite Magnetite CTAB HRTEM Vibrate Sample MagnetometerNotes
Acknowledgements
This study was supported by the Basic Research Expenses for the Special Funds of Jilin University.
References
- 1.Jiang J, Ai LH, Li LC (2009) J Mater Sci 44:1024. doi: https://doi.org/10.1007/s10854-009-9885-4 CrossRefGoogle Scholar
- 2.Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P (2007) J Mater Sci 42:7566. doi: https://doi.org/10.1007/s10853-007-1597-7 CrossRefGoogle Scholar
- 3.Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115CrossRefGoogle Scholar
- 4.Wang X, Zhuang J, Peng Q, Li YD (2005) Nature 437:121CrossRefGoogle Scholar
- 5.Speliotis DE (1999) J Magn Magn Mater 193:29CrossRefGoogle Scholar
- 6.Raj K, Mostowitz B, Casciari R (1995) J Magn Magn Mater 149:174CrossRefGoogle Scholar
- 7.Oswald P, Clement O, Chambon C, Schuman-Claeys E, Frija G (1997) Magn Reson Imaging 15:1025CrossRefGoogle Scholar
- 8.Berry C, Curtis ASG (2003) J Phys D Appl Phys 36:R182CrossRefGoogle Scholar
- 9.Bourlinos AB, Bakandritsos A et al (2006) J Mater Sci 41:5250. doi: https://doi.org/10.1007/s10853-006-0041-8 CrossRefGoogle Scholar
- 10.Liu XM, Fu SY, Zhu LP (2007) J Solid State Chem 180:461CrossRefGoogle Scholar
- 11.Cho SB, Noh JS, Park SJ, Lim DY, Choi SH (2007) J Mater Sci 42:4877. doi: https://doi.org/10.1007/s10853-006-0685-4 CrossRefGoogle Scholar
- 12.Liu XM, Fu SY, Xiao HM (2006) Mater Lett 60:2979CrossRefGoogle Scholar
- 13.Liu Q, Huang HX, Lai LF, Sun JH, Shang TM, Zhou QF, Xu Z (2009) J Mater Sci 44:1187. doi: https://doi.org/10.1007/s10853-009-3268-3 CrossRefGoogle Scholar
- 14.Zou GF, Xiong K, Jiang CL, Li H, Li TW, Du J, Qian YT (2005) J Phys Chem B 109:18356CrossRefGoogle Scholar
- 15.Yu DB, Sun XQ, Zou JW, Wang ZR, Wang F, Tang K (2006) J Phys Chem B 110:21667CrossRefGoogle Scholar
- 16.Chin KC, Poh CK, Chong GL, Van LH, Sow CH, Lin JY, Wee ATS (2007) J Phys Chem C 111:9136CrossRefGoogle Scholar
- 17.Sun Y, Xia Y (2002) Science 298:2176–2179CrossRefGoogle Scholar
- 18.Xiong Y, Xia Y (2007) Adv Mater 19:3385CrossRefGoogle Scholar
- 19.Xiong Y, McLellan JM, Yin Y, Xia Y (2007) Angew Chem Int Ed 46:790CrossRefGoogle Scholar
- 20.Swaminathan R, Willard MA, Mchenry ME (2006) Acta Mater 54:807CrossRefGoogle Scholar