Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5274–5287 | Cite as

Interface effects on highly epitaxial ferroelectric thin films

  • Y. Lin
  • C. L. Chen
Ferroelectrics

Abstract

Interface effects have been found to play a key role in controlling the epitaxial nature and physical properties on the highly epitaxial ferroelectric thin films. Thin film ferroelectrics are dominantly affected by the strains induced by lattice misfits between the films and the substrates, surface step terrace, both step height and terrace dimension, and the surface terminations. The natures of interface induced local strain formations, edge dislocations, and antiphase domain boundaries are reviewed in this article.

Keywords

BaTiO3 Edge Dislocation Select Area Electron Diffraction Pattern Misfit Dislocation Barium Strontium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation, the Department of Energy, the Army Research Office, the Texas Higher Education ARP Program, and the State of Texas through the TcSUH at University of Houston.

References

  1. 1.
    Joshi PC, Cole MW (2000) Appl Phys Lett 77:289CrossRefADSGoogle Scholar
  2. 2.
    Chen CL, Feng HH, Zhang Z, Brazdeikis A, Huang ZJ, Chu WK, Chu CW, Miranda FA, Van Keuls FW, Romanofsky RR, Liou Y (1999) Appl Phys Lett 75:412CrossRefADSGoogle Scholar
  3. 3.
    Kotechi DE (1997) Integr Ferroelectr 16:1CrossRefGoogle Scholar
  4. 4.
    Dalberth MJ, Stauber RE, Price JC, Roger CT, Galt D (1998) Appl Phys Lett 72:507CrossRefADSGoogle Scholar
  5. 5.
    Jia QX, Findikoglu AT, Reagor D, Lu P (1998) Appl Phys Lett 73:897CrossRefADSGoogle Scholar
  6. 6.
    Schwarzkopf J, Fornari R (2006) Prog Cryst Growth Charact Mater 52:159CrossRefGoogle Scholar
  7. 7.
    Nagarajan V, Alpay SP, Ganpule CS, Nagaraj B, Aggarwal B, Williams ED, Roytburd AL, Ramesh R (2000) Appl Phys Lett 77:438CrossRefADSGoogle Scholar
  8. 8.
    Chang W, Gilmore CM, Kim WJ, Pond JM, Kirchoefer SW, Qadri SB, Chirsey DB, Horwitz JS (2000) J Appl Phys 87:3044CrossRefADSGoogle Scholar
  9. 9.
    Hyun S, Char K (2001) Appl Phys Lett 79:254CrossRefADSGoogle Scholar
  10. 10.
    Trithaveesak O, Schubert J, Ch Buchal (2005) J Appl Phys 98:114101CrossRefADSGoogle Scholar
  11. 11.
    Chen YB, Sun HB, Katz MB, Pan XQ, Choi KJ, Jang HW, Eom CB (2007) Appl Phys Lett 91:252906CrossRefADSGoogle Scholar
  12. 12.
    Chen CL, Shen J, Chen SY, Luo GP, Chu CW, Miranda FA, Van Keuls FW, Jiang JC, Meletis EI, Chang H (2001) Appl Phys Lett 78:652CrossRefADSGoogle Scholar
  13. 13.
    Liu SW, Weaver J, Lin Y, Donner W, Chen X, Chen CL, Jiang JC, Meletis EI, Bhalla AS (2004) Appl Phys Lett 85:3202CrossRefADSGoogle Scholar
  14. 14.
    Yano Y, Iijima K, Daitoh Y, Terashima T, Bando Y, Watanabe Y, Kasatani H, Terauchi H (1994) J Appl Phys 76:7833CrossRefADSGoogle Scholar
  15. 15.
    Li H, Roytburd AL, Alpay SP, Tran TD, Salamanca-Riba L, Ramesh R (2001) Appl Phys Lett 78:2354CrossRefADSGoogle Scholar
  16. 16.
    Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP, Roytburd AL, Williams ED, Ramesh R (1999) Appl Phys Lett 75:4183CrossRefADSGoogle Scholar
  17. 17.
    Canedy CL, Li H, Alpay SP, Salamanca-Riba L, Roytburd AL, Ramesh R (2000) Appl Phys Lett 77:1695CrossRefADSGoogle Scholar
  18. 18.
    Ellerkmann U, Liedtke R, Boettger U, Waser R (2004) Appl Phys Lett 85:4708CrossRefADSGoogle Scholar
  19. 19.
    Hofer C, Halder S, Waser R (2006) Ferroelectrics 332:153CrossRefGoogle Scholar
  20. 20.
    Katayama I, Shimosato H, Ashida M, Kawayama I, Tonouchi M, Itoh T (2008) J Lumin 128:998CrossRefGoogle Scholar
  21. 21.
    Alguero M, Calzada ML, Martin MJ, Pardo L (2002) J Phys Chem Solids 63:471CrossRefADSGoogle Scholar
  22. 22.
    Iakovlev S, Solterbeck CH, Es-Souni M (2002) Appl Phys Lett 81:1854CrossRefADSGoogle Scholar
  23. 23.
    Jing Y, Luo J (2005) Sens Actuators A 121:103CrossRefGoogle Scholar
  24. 24.
    Sumi K, Qiu H, Kamei H, Moriya S, Murai M, Shimada M, Nishiwaki T, Takei K, Miyashita S, Hashimoto M (1998) Thin Solid Films 330:183CrossRefADSGoogle Scholar
  25. 25.
    Wu L, Wu J (2007) J Cryst Growth 308:424CrossRefADSGoogle Scholar
  26. 26.
    Towner DJ, Lansford TJ, Wessels BW (2004) J Electroceram 13:89CrossRefGoogle Scholar
  27. 27.
    Catalan G, Noheda B, McAneney J, Sinnamon LJ, Gregg JM (2005) Phys Rev B 72:020102RCrossRefADSGoogle Scholar
  28. 28.
    Devonshire AF (1949) Philos lag 40:1040Google Scholar
  29. 29.
    Forsbergh PW (1954) Phys Rev 93:686MATHCrossRefADSGoogle Scholar
  30. 30.
    Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) J Appl Phys 62:3331CrossRefADSGoogle Scholar
  31. 31.
    Rossetti GA, Udayakumar KR, Haun MJ, Cross LE (1990) J Am Ceram Soc 73:3334CrossRefGoogle Scholar
  32. 32.
    Kushida K, Takeuchi H (1990) Ferroelectrics 108:3Google Scholar
  33. 33.
    Kushida K, Takeuchi H (1991) IEEE Trans, Ultrason Ferroelectr Freq Control (Special Issue on Ferroelectric Thin Films)Google Scholar
  34. 34.
    Rossetti GA, Cross LE, Kushida K (1991) Appl Phys Lett 59:2524CrossRefADSGoogle Scholar
  35. 35.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988Google Scholar
  36. 36.
    Pertsev NA, Zembilgotov AG, Hoffmann S, Waser R, Tagantsev AK (1999) J Appl Phys 85:1698CrossRefADSGoogle Scholar
  37. 37.
    Streiffer SK, Basceri C, Parker CB, Lash SE, Kingon AI (1999) J Appl Phys 86:4565CrossRefADSGoogle Scholar
  38. 38.
    Chen JH, Jia CL, Urban K, Chen CL (2002) Appl Phys Lett 81:1291CrossRefADSGoogle Scholar
  39. 39.
    Ban ZG, Alpay SP (2002) J Appl Phys 91:9288CrossRefADSGoogle Scholar
  40. 40.
    Okatan MB, Cole MW, Alpay SP (2008) J Appl Phys 104:104107CrossRefADSGoogle Scholar
  41. 41.
    Jiang JC, Meletis EI, Yuan Z, Chen CL (2007) Appl Phys Lett 90:051904CrossRefADSGoogle Scholar
  42. 42.
    Jiang JC, He J, Meletis EI, Liu J, Yuan Z, Chen CL, Dong C (2008) J Nano Res 3:59CrossRefGoogle Scholar
  43. 43.
    Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012CrossRefADSGoogle Scholar
  44. 44.
    Speck JS, Pompe W (1994) J Appl Phys 76:466CrossRefADSGoogle Scholar
  45. 45.
    Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477CrossRefADSGoogle Scholar
  46. 46.
    Kwak BS, Erbil A, Buda JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865CrossRefADSGoogle Scholar
  47. 47.
    Jiang JC, Lin Y, Chen CL, Chu CW, Meletis EI (2002) J Appl Phys 91:3188CrossRefADSGoogle Scholar
  48. 48.
    Gao HJ, Chen CL, Rafferty B, Pennycook SJ, Luo GP, Chu CW (1999) Appl Phys Lett 75:2542CrossRefADSGoogle Scholar
  49. 49.
    Liu SW, Weaver J, Donner W, Yuan Z, Chen CL, Jiang JC, Meletis EI, Chang W, Kirchoefer SW, Horwitz J, Bhalla A (2005) Appl Phys Lett 87:142905CrossRefADSGoogle Scholar
  50. 50.
    Liu SW, Chakhalian J, Xiao X, Chen CL (2007) Appl Phys Lett 90:042901CrossRefADSGoogle Scholar
  51. 51.
    Misirlioglu IB, Vasiliev AL, Alpay SP, Aindow M, Ramesh R (2006) J Mater Sci 4:697. doi: 10.1007/s10853-006-6488-9 CrossRefADSGoogle Scholar
  52. 52.
    Alpay SP, Misirlioglu IB, Nagarajan V, Ramesh R (2004) Appl Phys Lett 85:2044CrossRefADSGoogle Scholar
  53. 53.
    Zheng Y, Wang B, Woo CH (2007) J Mech Phys Soli 55:1661MATHCrossRefADSGoogle Scholar
  54. 54.
    Tian HF, Yu HC, Zhu XH, Wang YG, Zheng DN, Yang HX, Li JQ (2005) Phys Rev B 71:115419CrossRefADSGoogle Scholar
  55. 55.
    Li YL, Hu SY, Choudhury S, Baskes MI, Saxena A, Lookman T, Jia QX, Schlom DG, Chen LQ (2008) J Appl Phys 104:104110CrossRefADSGoogle Scholar
  56. 56.
    Nagarajan V, Jia CL, Kohlsteda H, Waser R, Misirlioglu IB, Alpay SP, Ramesh R (2005) Appl Phys Lett 86:192910CrossRefADSGoogle Scholar
  57. 57.
    Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Jiang JC, Chen CL, Lin Y, Horwitz J, Jacobson AJ, Meletis EI, Phil Mag Lett (in press)Google Scholar
  59. 59.
    Chen CL, Lin Y, Yuan Z, Li Y, Horwitz J, Jiang JC, Meletis EI, Jacobson AJ, Nature Mat (submitted)Google Scholar
  60. 60.
    Brahim D, Emmanuel D, Julie G (2007) Appl Phys Lett 90:022908CrossRefGoogle Scholar
  61. 61.
    Lee JS, Lin Y (2003) MRS Fall Meeting, Boston, MA, Dec 1–4Google Scholar
  62. 62.
    Park BH, Peterson EJ, Jia QX, Lee J, Si W, Xi XX (2001) Appl Phys Lett 78:533Google Scholar
  63. 63.
    Lin Y, Chen X, Liu SW, Chen CL, Lee JS, Li Y, Jia QX, Bhalla A (2004) Appl Phys Lett 84:577CrossRefADSGoogle Scholar
  64. 64.
    Lin Y, Chen X, Liu SW, Chen CL, Lee JS, Li Y, Jia QX, Bhalla A (2005) Appl Phys Lett 86:142902CrossRefADSGoogle Scholar
  65. 65.
    Zembilgotov AG, Pertsev NA, Böttger U, Waser R (2005) Appl Phys Lett 86:052903CrossRefADSGoogle Scholar
  66. 66.
    Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom DG, Eom CB (2004) Science 306:1005PubMedCrossRefADSGoogle Scholar
  67. 67.
    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Nature 430:758PubMedCrossRefADSGoogle Scholar
  68. 68.
    Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395PubMedCrossRefADSGoogle Scholar
  69. 69.
    Tenne DA, Bruchhausen A, Lanzillotti-Kimura ND, Fainstein A, Katiyar RS, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni JH, Tian W, Schlom DG, Choi KJ, Kim DM, Eom CB, Sun HP, Pan XQ, Li YL, Chen LQ, Jia QX, Nakhmanson SM, Rabe KM, Xi XX (2006) Science 313:1614PubMedCrossRefADSGoogle Scholar
  70. 70.
    Li YL, Hu SY, Tenne D, Soukiassian A, Schlom DG, Xi XX, Choi KJ, Eom CB, Saxena A, Lookman T, Jia QX, Chen LQ (2007) Appl Phys Lett 91:112914CrossRefADSGoogle Scholar
  71. 71.
    Rios S, Ruediger A, Jiang AQ, Scott JF, Lu HB, Chen ZH (2003) J Phys: Condens Mater 15:305CrossRefADSGoogle Scholar
  72. 72.
    Jiang AQ, Scott JF, Lu HB, Chen ZH (2003) J Appl Phys 93:1180CrossRefADSGoogle Scholar
  73. 73.
    Li YL, Hu SY, Tenne D, Soukiassian A, Schlom DG, Chen LQ, Xi XX, Choi KJ, Eom CB, Saxena A, Lookman T, Jia QX (2007) Appl Phys Lett 91:252904CrossRefADSGoogle Scholar
  74. 74.
    Liu M, Collins G, Silva E, Liu J, Chen CL, Jiang JC, Meletis EI, Cole MW, Nat Mater (submitted)Google Scholar
  75. 75.
    Hellwege K-H, Hellwege AM (eds) (1981) Landolt-Börnstein: numerical data and functional relationships in science and technology new series, Group III, vol 16a. Springer, Berlin, p 59Google Scholar
  76. 76.
    Hellwege K-H, Hellwege AM (eds) (1979) Landolt-Börnstein: numerical data and functional relationships in science and technology new series, Group III, vol 11. Springer, Berlin, p 418Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science & Technology of ChinaChengduPeople’s Republic of China
  2. 2.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations