Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4383–4388 | Cite as

PWA/silica/PFSA composite membrane for direct methanol fuel cells

  • Fangjian Shang
  • Lei LiEmail author
  • Yongming ZhangEmail author
  • Hong Li
Article

Abstract

A novel composite membrane was prepared by incorporation of silica-included phosphotungstic acid (PWA) additive into perfluorosulfonic acid (PFSA) followed by solution casting. Physico-chemical properties of the composite membranes were studied by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetry analysis (TGA), water uptake and swelling ratio. The results of FT-IR and TGA illustrated the stability of the PWA-silica additive in the PFSA matrix. Lower PWA-silica additive loading (2.5 and 5 wt%) in the composite membranes helped to inhibit methanol crossover and enhance the proton conductivity. However, higher additive content shows decrease in both methanol resistance and proton conductivity.

Keywords

Proton Conductivity Composite Membrane Direct Methanol Fuel Cell Maximum Power Density H3PW12O40 

Notes

Acknowledgements

The authors would like to thank for the financial support by the Key Technology R&D Program of China (2006BAE02A04) and Sino-Canada International Project (2008DFA61590). Also we are grateful to Shandong Dongyue Polymer Material Co. Ltd. to provide the PFSA precursor materials.

References

  1. 1.
    Mioc U, Davidovic M, Tjapkin N, Colomban P, Novak A (1991) Solid State Ion 46:103CrossRefGoogle Scholar
  2. 2.
    Sahu AK, Selvarani G, Pitchumani S, Sridhar P, Shukla AK (2007) J Electrochem Soc 154:B123CrossRefGoogle Scholar
  3. 3.
    Ren X, Zawadzinski TA, Uribe F, Dai H, Gottesfeld S (1995) Electrochem Soc Proc 95:84Google Scholar
  4. 4.
    Ramani V, Kuna HK, Fenton JM (2004) J Membr Sci 232:31CrossRefGoogle Scholar
  5. 5.
    Kim HK, Chang H (2007) J Membr Sci 288:188CrossRefGoogle Scholar
  6. 6.
    Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) J Membr Sci 173:17CrossRefGoogle Scholar
  7. 7.
    Tazi B, Savadogo O (2000) Electrochim Acta 45:4329CrossRefGoogle Scholar
  8. 8.
    Shao ZG, Joghee P, Hsing IM (2004) J Membr Sci 229:43CrossRefGoogle Scholar
  9. 9.
    Xu WL, Lu TH, Liu CP, Xing W (2005) Electrochim Acta 50:3280CrossRefGoogle Scholar
  10. 10.
    Staiti P, Aricò AS, Baglio V, Lufrano F, Passalacqua E, Antonucci V (2001) Solid State Ion 145:101CrossRefGoogle Scholar
  11. 11.
    Izumi Y, Hisano K, Hida T (1999) Appl Catal A Gen 181:277CrossRefGoogle Scholar
  12. 12.
    Luan YH, Zhang YM, Zhang H, Li L, Li H, Liu YG (2008) J Appl Polym Sci 107:396CrossRefGoogle Scholar
  13. 13.
    Staiti P, Freni S, Hocevar S (1999) J Power Sources 79:250CrossRefGoogle Scholar
  14. 14.
    Li L, Wang YX (2006) J Power Sources 162:541CrossRefGoogle Scholar
  15. 15.
    Jiang RC, Kunz HR, Fenton JM (2006) J Membr Sci 272:116CrossRefGoogle Scholar
  16. 16.
    Deng Q, Moore RB, Mauritz KA (1998) J Appl Polym Sci 68:747CrossRefGoogle Scholar
  17. 17.
    Miyake N, Wainright JS, Savinell RF (2001) J Electrochem Soc 148:A898CrossRefGoogle Scholar
  18. 18.
    Cho HD, Won J, Ha HY (2008) Renew Energy 33:248CrossRefGoogle Scholar
  19. 19.
    Shahi VK (2007) Solid State Ion 177:3395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical TechnologyShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations